
GRETL Manual
for version 0.91

GNU REGRESSION, ECONOMETRICS AND TIME-SERIES LIBRARY

Allin Cottrell
Department of Economics

Wake Forest University

GRETL is free software under the GNU General Public License (please see http://www.gnu.org/
copyleft/gpl.html) and comes with ABSOLUTELY NO WARRANTY. “Free” here means both
that the program is available free of charge and that the source code is available and freely
redistributable. For more details on the concept of free software visit http://www.gnu.org.

http://ricardo.ecn.wfu.edu/gretl/

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org

Acknowledgements

My primary debt is to Professor Ramu Ramanathan of the University of California, San Diego.
A few years back he was kind enough to provide me with the source code for his program
ESL (“Econometrics Software Library”), which I ported to Linux, and since then I have been
collaborating with him on updating and extending the program. For the GRETL project I have
made extensive changes to the original ESL code. New econometric functionality has been
added, and the graphical interface is entirely new. Please note that Professor Ramanathan is
not responsible for any bugs in GRETL.

I am also grateful to William Greene, author of Econometric Analysis, for permission to
include in the GRETL distribution some of the data files analysed in his text.

I have benefitted greatly from the work of numerous developers of open-source software:
for specifics please see Appendix B to this manual.

My thanks are due to Richard Stallman of the Free Software Foundation, for his support of
free software in general and for agreeing to “adopt” GRETL as a GNU program in particular.

Allin Cottrell (cottrell@wfu.edu)
Wake Forest University
April, 2001

Contents

1 Introduction . 2

2 Installing the programs . 2

3 Getting started . 3

4 Estimation output . 6

5 The main window menus . 7

6 Command scripts . 9

7 The “session” concept . 10

8 The gretl toolbar . 12

9 Data files . 13

10 Binary databases . 15

11 Missing data values . 16

12 Creating a data file from scratch . 16

13 Panel data . 18

14 Getting more data . 20

15 Graphs and plots . 21

16 Monte Carlo simulations . 21

17 Iterated least squares . 24

18 Program options and arguments: gretl . 26

19 Program options and arguments: gretlcli . 27

20 Path searching . 27

21 Tables of estimators and tests . 29

22 Command Reference . 31

23 Troubleshooting gretl . 48

24 The command line interface . 48

25 Assessing program accuracy: the NIST datasets . 52

Appendix A: Crash course in econometrics . 54

Appendix B: Technical notes . 56

Appendix C: Advanced econometrics and free software . 56

References . 57

1

1 Introduction

GRETL is an econometrics package, built around a shared library which may be accessed using
a command-line client program (gretlcli) or a graphical user interface (gretl). If you don’t know
what econometrics is but have some interest in the software anyway, please take a look at
Appendix A below.

Features at a glance

• User-friendly. GRETL offers an intuitive user interface; it is very easy to get up and running
with econometric analysis. Thanks to its association with Ramanathan’s Introductory
Econometrics the package offers many practice data files and command scripts. These
are well annotated and accessible.

• Flexible: You can choose your preferred point on the spectrum from interactive point-
and-click to batch processing, and can easily combine these approaches.

• Cross-platform: GRETL’s home platform is Linux, but it is also available for MS Windows. I
have compiled it on AIX and it should work on any unix-like system that has the appro-
priate basic libraries (see Appendix B).

• Open source: The full source code for GRETL is available to anyone who wants to critique
it, patch it, or extend it. The author welcomes any bug reports.

• Reasonably sophisticated: GRETL offers a full range of least-squares based estimators,
including Two-Stage Least Squares. It also offers (binomial) logit and probit estimation,
and has a loop construct for running Monte Carlo analyses or iterated least squares
estimation of non-linear models. While it does not include all the estimators and tests
that a professional econometrician might require, it supports the export of data to the
formats of GNU R (www.r-project.org) and GNU Octave (www.octave.org) for further
custom processing (see Appendix C).

• Internet ready: GRETL can access and fetch databases from a server at Wake Forest Uni-
versity. The MS Windows version comes with an updater program which will detect when
a new version is available and offer the option of auto-updating.

2 Installing the programs

Linux/unix

On the Linux platform you have the choice of compiling the GRETL code yourself or making
use of a pre-built package. Ready-to-run packages are available in rpm format (suitable for Red
Hat Linux and related systems) and also deb format (Debian GNU/Linux). I am grateful to Dirk
Eddelbüttel for making the latter.

If you prefer to compile your own (or are using a unix system for which pre-built packages
are not available) here is what to do.

1. Download the latest GRETL source package from http://ricardo.ecn.wfu.edu/gretl.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar -xvfz gretl-N.tar.gz (replace N with the specific version number of
the file you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gretl-0.70).

2

www.r-project.org
www.octave.org
http://ricardo.ecn.wfu.edu/gretl

4. The basic routine is then

./configure
make
make install

However, you should probably do ./configure --help first to see what options are
available. One option you way wish to tweak is --prefix. By default the installation
goes under /usr/local but you can change this. For example

./configure --prefix=/usr

will put everything under the /usr tree. In the event that a required library is not found
on your system, so that the configure process fails, please take a look at Appendix B of
this manual.

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter
of downloading gretl install.exe from http://ricardo.ecn.wfu.edu/gretl/win32 and
running this program. You will be prompted for a location to install the package (the default
is c:\userdata\gretl).

Updating

If your computer is connected to the Internet, then on start-up gretl will query its home website
at Wake Forest University to see if any program updates are available. If so, a window will open
up informing you of that fact. (If you want to supress this feature, uncheck the box marked
“Tell me about gretl updates” under gretl’s “File, Preferences, General” menu.)

The MS Windows version of the program goes a step further: it tells you that you can update
GRETL automatically if you wish. To do this, follow the instructions in the popup window: close
gretl then run the program titled “gretl updater” (you should find this along with the main gretl
program item, under the Programs heading in the Windows Start menu). Once the updater has
completed its work you may restart gretl.

3 Getting started

Assuming the package has been successfully installed, starting from scratch is probably easiest
with the graphical interface, gretl.1

You can supply the name of a data file to open as an argument to gretl, but for the moment
let’s not do that: just fire up the program. You should see a main window (which will hold
information on the data set but which is at first blank) and various menus, some of them
disabled at first.

What can you do at this point? You can browse the supplied data files (or databases),
open a data file, create a new data file, read the help items, or open a command script. For

1For convenience I will refer to the graphical client program simply as gretl in this manual. Note, however, that
the specific name of the program differs according to the computer platform. On unix-like systems its is called
gretl x11 while on MS Windows it is gretlw32.exe. On unix-like systems a wrapper script named gretl is also
installed.

This introduction is mostly angled towards the graphical client program; please see sections 22 and 24 below for
details on the command-line program, gretlcli.

3

http://ricardo.ecn.wfu.edu/gretl/win32

now let’s browse the supplied data files. Under the File menu choose “Open data, sample file,
Ramanathan...”. A second window should open, presenting a list of data files supplied with the
package (see Figure 1). The numbering of the files corresponds to the chapter organization of
Ramanathan (1998), which contains discussion of the analysis of these data. The data will be
useful for practice purposes even without the text.

Figure 1: Practice data files window

If you select a row in this window and click on “Info” this pops open the the “header file”
for the data set in question, which tells you something about the source and definition of the
variables. If you find a file that is of interest, you may open it by clicking on “Open”, or just
double-clicking on the file name. For the moment let’s open data3-6.

Tip: In GRETL windows containing lists, double-clicking on a line launches a default
action for the associated list entry: e.g. displaying the values of a data series, opening
a file.

This file contains data pertaining to a classic econometric “chestnut”, the consumption
function. The data window should now display the name of the current data file, the overall
data range and sample range, and the names of the variables along with brief descriptive
tags—see Figure 2.

4

Figure 2: Main window, with a practice data file open

5

OK, what can we do now? Hopefully the various menu options should be fairly self ex-
planatory. For now we’ll dip into the Model menu; a brief tour of all the main window menus
is given in section 5 below.

GRETL’s Model menu offers numerous various econometric estimation routines. The sim-
plest and most standard is Ordinary Least Squares (OLS).

Selecting OLS pops up a dialog box calling for a model specification. This takes the form of
a list of variable names or numbers, separated by spaces. The first name or number represents
the dependent variable, the remainder the independent variables. It is usual to include a con-
stant (ID number 0) among the independent variables (otherwise you are forcing the intercept
to equal zero).

Tip: You can put a variable’s ID number into the dialog box by clicking on that vari-
able’s row in the main window.

Thus, continuing the example of data3-6, the entry

2 0 3 (or equivalently Ct 0 Yt)

specifies a regression of consumption (dependent) on income and a constant.
You can specify a lagged value of an existing variable without explicitly adding this to the

data set first. Thus a variant on the above estimation command which includes the first lag of
income on the right-hand side would be

2 0 3 Yt(-1)

The lag is selected using a negative integer enclosed in parentheses. Note that in this context
the name, not the number, of the variable in question must be used.

4 Estimation output

Once you’ve specified a model, a window displaying the regression output will appear. The
output is reasonably comprehensive and in a standard format.

The output window contains menus that allow you to inspect or graph the residuals and
fitted values, and to run various diagnostic tests on the model.

There is also an option to reprint the regression output in LATEX format. This is not fully
implemented yet, but works for OLS models. You can print the results in a tabular format
(similar to what’s in the output window, but properly typeset) or as an equation, across the
page. For each of these options you can choose to preview the typeset product, or save the
output to file for incorporation in a LATEX document. Previewing requires that you have a
functioning TEX system on your computer.

If you want to import gretl output into an editor or word processor there are two main
options. You can simply copy and paste from an output window (using its Edit menu) to
the target program, or you can save the output to a file then import the file into the target
program. When you finish a gretl session you are given the option of saving all the output
from the session to a single file.

Tip: When inserting GRETL output into a word processor, select a monospaced or
typewriter-style font (e.g. Courier) to preserve the output’s tabular formatting. Select
a small font (10-point Courier should do) to prevent the output lines from being
broken in the wrong place.

6

5 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Session, Data, Sample,
Variable, Model and Help menus (see Figure 2).

• File menu

– Open data: Open a native GRETL data file or import from other formats. See section 9.

– Clear data set: Clear the current data set out of memory. Generally you don’t have to
do this (since opening a new data file automatically clears the old one) but sometimes
it’s useful (see section 12).

– Browse databases: See sections 10 and 12.

– Save data and Export data: Write out the current data set in native format, in Comma
Separated Values (CSV) format, or the formats of GNU R or GNU Octave. See section 9
and also Appendix C.

– Create data set: Initialize the built-in spreadsheet for entering data manually. See
section 12.

– Save last graph: Just as it says.

– Open command file: Open a file of GRETL commands, either one you have created
yourself or one of the practice files supplied with the package. If you want to create
a command file from scratch use the next item, New command file.

– Gretl console: Open a “console” window into which you can type commands as you
would using the command-line program, gretlcli (as opposed to using point-and-
click). See section 22.

– p-value finder : Open a window which enables you to look up p-values from the
Gaussian, t, χ2, F or gamma distributions. See also the pvalue command in sec-
tion 22 below.

– statistical tables: Look up critical values for commonly used distributions (Gaussian,
t, χ2, F and Durbin–Watson).

– test calculator : Calculate test statistics and p-values for a range of common hypoth-
esis tests (population mean, variance and proportion; difference of means, variances
and proportions). The relevant sample statistics must be already available for en-
try into the dialog box. For some simple tests that take as input data series rather
than pre-computed sample statistics, see “Difference of means” and “Difference of
variances” under the Data menu.

– Preferences: Set the paths to various files GRETL needs to access. Choose the font
in which gretl displays text output. Select or unselect “expert mode”. (If this mode
is selected various warning messages are suppressed.) Activate or suppress GRETL’s
messaging about the availability of program updates. Configure or turn on/off the
main-window toolbar.

– Exit: Quit the program. If expert mode is not selected you’ll be prompted to save
any unsaved work.

• Session menu This is discussed separately below. Please see section 7.

• Data menu

– Display values: pops up a window with a simple (not editable) printout of the values
of the variables (either all of them or a selected subset).

7

– Edit values: pops up a spreadsheet window where you can make changes, add new
variables, and extend the number of observations. (The data matrix must remain
rectangular, with the same number of observations for each series.)

– Graph specified vars: Gives a choice between a time series plot, a regular X–Y scatter
plot, an X–Y plot using impulses (vertical bars), and an X–Y plot “with factor sep-
aration” (i.e. with the points colored differently depending to the value of a given
dummy variable). Serves up a dialog box where you specify the variables to graph.
The simplest way to fill out the dialog entry is to refer to the variables by their ID
numbers (shown in the leftmost column of the main data window). Thus, having
chosen the scatter plot option, an entry of “2 3” will plot variable number 2 (here,
consumption) against variable number 3 (income). The last referenced variable will
be on the x axis. Gnuplot is used to render the graph.

– Multiple scatterplots: Show a collection of (at most six) pairwise plots, with either a
given variable on the y axis plotted against several different variables on the x axis,
or several y variables plotted against a given x. May be useful for exploratory data
analysis.

– Read info, Edit header : “Read info” just displays the header file information for
the current data file; “Edit header” allows you to make changes to it (if you have
permission to do so).

– Summary statistics: shows a fairly full set of descriptive statistics for all variables in
the data set.

– Correlation matrix: shows the pairwise correlation coefficients for the variables in
the data set.

– Difference of means: calculates the t statistic for the null hypothesis that the popu-
lation means are equal for two selected variables and shows its p-value.

– Difference of variances: calculates the F statistic for the null hypothesis that the
population variances are equal for two selected variables and shows its p-value.

– Add variables: gives a sub-menu of standard transformations of variables (logs,
lags, squares, etc.) that you may wish to add to the data set. Also gives the op-
tion of adding random variables, and (for time-series data) adding seasonal dummy
variables (e.g. quarterly dummy variables for quarterly data). Includes an item for
seeding the program’s pseudo-random number generator.

– Refresh window: Sometimes gretl commands generate new variables. The “refresh”
item ensures that the listing of variables visible in the main data window is in sync
with the program’s internal state.

• Sample menu

– Set range: Select a different starting and/or ending point for the current sample,
within the range of data available.

– Restore full range: self-explanatory.

– Set frequency, startobs: Impose a particular interpretation of the data in terms of
frequency and starting point. This is primarily intended for use with panel data; see
section 13 below.

– Define, based on dummy: Given a dummy (indicator) variable with values 0 or 1, this
drops from the current sample all observations for which the dummy variable has
value 0.

8

– Restrict, based on criterion: Similar to the item above, except that you don’t need a
pre-defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the
sample is restricted to observations satisfying that condition. See the help for genr
in section 22 for details on the Boolean operators that can be used.

– Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see section 11 below).

– Count missing values: Give a report on observations where data values are missing.
May be useful in examining a panel data set, where it’s quite common to encounter
missing values.

– Add case markers: Prompts for the name of a text file containing “case markers”
(short strings identifying the individual observations) and adds this information to
the data set. See section 9 below.

• Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most
options will be self-explanatory. Note that you can rename a variable, and can edit its
descriptive label.

You can also “Define a new variable” via a formula (e.g. involving some function of one
or more existing variables). For the syntax of such formulae, look at the online help for
“Generate variable syntax” or see the genr command in section 22 below. One simple
example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

• Model menu This is introduced in section 3. For details on the various estimators offered
under this menu please consult sections 21 and 22 below, and/or the online help under
“Help, Estimation”.

• Help menu Please use this as needed! It gives details on the syntax required in various
dialog entries.

6 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands
are recorded in the form of a “script”. Such scripts can be edited and re-run, using either gretl
or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “Command
log” under the File menu. This log is called session.inp and it is overwritten whenever you
start a new session. To preserve it, save the script under a different name. Script files will be
found most easily, using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Open command file” menu
item.

With a script window open, use its “File, Save and Run” menu item to run the commands. All
output is directed to a single window, where it can be edited, saved or copied to the clipboard.

To learn more about the possibilities of scripting, take a look at the gretl Help item “Script
commands syntax,” or start up the command-line program gretlcli and consult its help, or
consult section 22 of this manual. In addition, the gretl package includes over 70 “practice”

9

scripts. Most of these relate to Ramanathan (1998), but they may also be used as a free-
standing introduction to scripting in gretl and to various points of econometric theory. You
can explore the practice files under “File, Open command file, practice file” There you will find
a listing of the files along with a brief description of the points they illustrate and the data
they employ. Open any file and run it (“File, Run” in the resulting script window) to see the
output.

Note that long commands in a script can be broken over two or more lines, using backslash
as a continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting
each method where it offers greater convenience. Here are two suggestions.

• Open a data file in the GUI. Explore the data—generate graphs, run regressions, perform
tests. Then open the Command log, edit out any redundant commands, and save it under
a specific name. Run the script to generate a single file containing a concise record of
your work.

• Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in section 22 below). Typically
this sort of thing can be accomplished more efficiently via commands assembled with
forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the
data via the GUI. To revisit the data at a later point, open and rerun the “preparatory”
script first.

A further option is available for your computing convenience. Under gretl’s File menu you
will find the item “Gretl console”. This opens up a window in which you can type commands
and execute them one by one (by pressing the Enter key) interactively. This is essentially the
same as gretlcli’s mode of operation, except that (a) the GUI is updated based on commands
executed from the console, enabling you to work back and forth as you wish, and (b) GRETL’s
Monte Carlo loop routine (see section 16) is not at present available in this mode.

7 The “session” concept

gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it later.
This is experimental (and at present more likely to be buggy than the rest of the program): I
would be interested in hearing people’s reactions.

The basic idea is to provide a little iconic space containing various objects pertaining to
your current working session (see Figure 3). You can add objects (represented by icons) to this
space as you go along. If you save the session, these added objects should be available again
if you re-open the session later.

If you start gretl and open a data set, then select “Icon view” from the Session menu, you
should see the basic default set of icons: these give you quick access to the command script,
information on the data set (if any), correlation matrix and descriptive summary statistics.
All of these are activated by double-clicking the relevant icon. The “Data set” icon is a little
more complex: double-clicking opens up the data in the built-in spreadsheet, but you can also
right-click on the icon for a menu of other actions.

Tip: In many GRETL windows, the right mouse button brings up a menu with common
tasks.

Two sorts of objects can be added to the Icon View window: models and graphs.

10

Figure 3: Icon view: one model and one graph have been added to the default icons

11

To add a model, first estimate it using the Model menu. Then pull down the File menu in
the model window and select “Save to session as icon...” or “Save as icon and close” (the first
of these prompts you for a name for the model, while the second uses a default name, e.g.
“Model 1”).

To add a graph, first create it (under the Data menu, “Graph specified vars”, or via one
of gretl’s other graph-generating commands), then choose “Add last graph” from the Session
menu.

Once a model or graph is added its icon should appear in the Icon View window. Double-
clicking on the icon redisplays the object, while right-clicking brings up a menu which lets you
rename or delete the object. This popup menu also gives you the option of editing graphs.

If you create models or graphs that you think you may wish to re-examine later, then before
quitting gretl select “Save as...” from the Session menu and give a name under which to save
the session. To re-open the session later, either

• Start gretl then re-open the session file by going to the “Open” item under the Session
menu, or

• From the command line, type gretl -r sessionfile, where sessionfile is the name under
which the session was saved.

Also under the Session menu is an option to launch a GNU R session. R is a separate
program (see Appendix C): if R is not installed on your computer this menu item will not
accomplish anything. This is a convenience function for anyone wishing to carry out further
statistical analyses not available in GRETL: when R is invoked in this way, it comes up loaded
with a copy of the current GRETL data set.

8 The gretl toolbar

At the bottom left of the main window sits the toolbar. The icons have the following functions,
reading from left to right:

1. Launch a calculator program. This is just a convenience function in case you want quick
access to a calculator when you’re working in gretl. The default program is calc.exe
under MS Windows, or xcalc under the X window system. You can change the program
under the “File, Preferences, General” menu, “Toolbar” tab.

2. Launch an editor or word processor. The default is winword.exe under MS Windows,
emacs under X. This is configurable in the same way as the calculator launcher.

3. Open the gretl console. A shortcut to the “Gretl console” menu item (section 5 above).

4. Open the GRETL website in your web browser. This will work only if you are connected to
the Internet and have a properly configured browser.

5. Open the current version of this manual, in PDF format. As with the previous item, this
requires an Internet connection; it also requires that your browser knows how to handle
PDF files.

6. A shortcut to the help item for script commands syntax (i.e. a listing with details of all
available commands).

7. Shortcut to dialog box for defining a graph.

8. Shortcut to the listing of datasets associated with Ramanathan’s Introductory Economet-
rics.

12

If you don’t care to have the toolbar displayed, you can turn it off under the “File, Prefer-
ences, General” menu. Go to the Toolbar tab and uncheck the “show gretl toolbar” box.

9 Data files

Basic native format

In GRETL’s native data format, a data set is represented by two files. One contains the actual
data and the other information on how the data should be read. To be more specific:

1. Actual data: A rectangular matrix of white-space separated numbers. Each column rep-
resents a variable, each row an observation on each of the variables (spreadsheet style).
Data columns can be separated by spaces or tabs. The filename should have either no
suffix or the suffix .dat. By default the data file is ASCII (plain text). Optionally it can be
gzip-compressed to save disk space.

You can insert comments into a data file: if a line begins with the hash mark (#) the entire
line is ignored. This is consistent with gnuplot and octave data files.

2. Header : The data file must be accompanied by a header file which has the same basename
as the data file plus the suffix .hdr. This file contains, in order:

• (Optional) comments on the data, set off by the opening string (* and the closing
string *), each of these strings to occur on lines by themselves.

• (Required) list of white-space separated names of the variables in the data file.
Names are limited to 8 characters, must start with a letter, and are limited to al-
phanumeric characters plus the underscore. The list may continue over more than
one line; it is terminated with a semicolon, ;.

• (Required) observations line of the form 1 1 85. The first element gives the data
frequency (1 for undated or annual data, 4 for quarterly, 12 for monthly). The
second and third elements give the starting and ending observations. Generally
these will be 1 and the number of observations respectively, for undated data. For
time-series data one can use dates of the form 1959.1 (quarterly, one digit after the
point) or 1967.03 (monthly, two digits after the point). See section 13 below for
special use of this line in the case of panel data.

• The keyword BYOBS.

Here is an example of a well-formed data header file.

(*
DATA9-6:

Data on log(money), log(income) and interest rate from US.
Source: Stock and Watson (1993) Econometrica (unsmoothed data)
Period is 1900-1989 (annual data).
Data compiled by Graham Elliott.

*)
lmoney lincome intrate ;
1 1900 1989
BYOBS

The corresponding data file contains three columns of data, each having 90 entries.

13

Extensions to the basic data format

The options available in GRETL data files are broader than the setup just described, in three
ways:

1. If the BYOBS keyword is replaced by BYVAR, and followed by the keyword BINARY, this
indicates that the corresponding data file is in binary format. Such data files can be
written from gretlcli using the store command with the -s flag (single precision) or the
-o flag (double precision).

2. If BYOBS is followed by the keyword MARKERS, GRETL expects a data file in which the
first column contains strings (8 characters maximum) used to identify the observations.
This may be handy in the case of cross-sectional data where the units of observation are
identifiable: countries, states, cities or whatever. It can also be useful for irregular time
series data, such as daily stock price data where some days are not trading days—in this
case the observations can be marked with a date string such as 10/01/98. (Remember
the 8-character maximum.) Note that BINARY and MARKERS are mutually exclusive flags.
Also note that the “markers” are not considered to be a variable: this column does not
have a corresponding entry in the list of variable names in the header file.

3. If a file with the same base name as the data file and header files, but with the suffix .lbl,
is found, this is read to fill out the descriptive labels for the data series. The format of the
(plain text) label file is simple: each line contains the name of one variable (as found in
the header file), followed by one or more spaces, followed by the descriptive label. Here
is an example:

price New car price index, 1982 base year

A label file of this sort is created automatically when you save data from gretl, if there
is any descriptive information to be saved. Such information can be added under the
“Variable, Edit label” menu item.

Other data file formats

GRETL will read various other data formats.

• Comma-Separated Values (CSV) files. These can be brought in using gretl’s “File, Open
Data, Import CSV...” menu item, or the import script command. The program expects
a file that has (a) valid variable names on the first row and (b) a rectangular block of
data beneath. Optionally the first column may contain strings such as dates (8 characters
max.): such a column should be headed “obs” or “date”, or its first row cell may be left
blank. There should be exactly one non-data row at the top of the file. See also section 12
below.

• BOX1 format data. Large amounts of micro data are available (for free) in this format via
the Data Extraction Service of the US Bureau of the Census. See

http://www.census.gov/ftp/pub/DES/www/welcome.html

BOX1 data may be imported using the “File, Open Data, Import BOX...” menu item or the
import -o script command.

When you import data from either of these two formats, gretl opens a “diagnostic” window,
reporting on its progress in reading the data. If you encounter a problem with ill-formatted
data, the messages in this window should give you a handle on fixing the problem.

14

http://www.census.gov/ftp/pub/DES/www/welcome.html

For the convenience of anyone wanting to carry out more complex data analysis, GRETL has
a facility for writing out data in the native formats of GNU R and GNU Octave (see Appendix
C). In the GUI client this option is found under the “File” menu; in the command-line client use
the store command with the flag -r (R) or -m (Octave).

10 Binary databases

For working with large amounts of data I have supplied gretl with a database-handling routine.
A database, as opposed to a data file, is not read directly into the program’s workspace. A
database can contain series of mixed frequencies and sample ranges. You open the database
and select series to import into the working data set. You can then save those series in a
native format data file if you wish. Databases can be accessed via gretl’s menu item “File,
Browse databases”.

A GRETL database consists of two parts: an ASCII index file (with filename suffix .idx)
containing information on the series, and a binary file (suffix .bin) containing the actual data.
Two examples of the format for an entry in the idx file are shown below:

G0M910 Composite index of 11 leading indicators (1987=100)
M 1948.01 - 1995.11 n = 575

currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128
characters). On the second line the first field is a frequency code: M for monthly, Q for quarterly
and A for annual. No other frequencies are accepted at present. Then comes the starting date
(N.B. with two digits following the point for monthly data, one for quarterly data, none for
annual), a space, a hyphen, another space, the ending date, the string “ n = ” and the integer
number of observations. This format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (64 characters) on
the source and nature of the data, following a hash mark. For example:

Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that
is, single-precision floating-point numbers, typically taking four bytes apiece. The numbers
are packed “by variable”, so that the first n numbers are the observations of variable 1, the
next m the observations on variable 2, and so on.

Online access to databases

As of version 0.40, gretl is able to access databases via the internet. Several databases are
available from Wake Forest University. Your computer must be connected to the internet for
this option to work. Please see the item on “Online databases” under gretl’s Help menu. Expect
to see this facility developed further in future releases.

RATS 4 databases

Thanks to Thomas Doan of Estima, who provided me with the specification of the database
format used by RATS 4 (Regression Analysis of Time Series), gretl can also handle such data-
bases. Well, actually, a subset of same: I have only worked on time-series databases containing
monthly and quarterly series. My university has the RATS G7 database containing data for the
seven largest OECD economies and gretl will read that OK.

15

Tip: Visit the GRETL data page at http://ricardo.ecn.wfu.edu/gretl/gretl_
data.html for details and updates on available data.

11 Missing data values

These are represented internally as −999. In a native-format data file they should be repre-
sented the same way. When importing CSV data GRETL accepts any of three representations of
missing values: −999, the string NA, or simply a blank cell. Blank cells should, of course, be
properly delimited, e.g. 120.6,,5.38, in which the middle value is presumed missing.

As for handling of missing values in the course of statistical analysis, GRETL does the fol-
lowing:

• In calculating descriptive statistics (mean, standard deviation, etc.) under the summary
command, missing values are simply skipped and the sample size adjusted appropriately.

• In running regressions GRETL first adjusts the beginning and end of the sample range,
truncating the sample if need be. Missing values at the beginning of the sample are
common in time series work due to the inclusion of lags, first differences and so on;
missing values at the end of the range are not uncommon due to differential updating of
series and possibly the inclusion of leads.

• If GRETL detects any missing values “inside” the (possibly truncated) sample range for a
regression it gives an error message and refuses to produce estimates.

Missing values in the middle of a data set are a problem. In a cross-sectional data set it
may be possible to move the offending observations to the beginning or the end of the file, but
obviously this won’t do with time series data. For those who know what they are doing (!), the
misszero function is provided under the genr command. By doing

genr foo = misszero(bar)

you can produce a series foo which is identical to bar except that any −999 values become
zeros. Then you can use carefully constructed dummy variables to, in effect, drop the missing
observations from the regression while retaining the surrounding sample range.2

12 Creating a data file from scratch

There are four ways to do this: (1) Use your favorite text editor to create the data file and
header file independently. (2) Use your favorite spreadsheet to establish the data file, save it in
Comma Separated Values format, then use gretl’s “Import CSV” option. (3) Use gretl’s built-in
spreadsheet. (4) Select data series from a suitable database.

Here are a few comments and details on these methods.

1. Using a text editor. This may be the method of choice for those who have a strong prefer-
ence in editors, and who don’t mind taking a few minutes to study the specifications for
valid data and header files, as set out in section 9 above.

Note that this method can be problematic under MS Windows due to the propensity of
Microsoft tools “helpfully” to add the suffix .txt to the filename you specify when you
save a plain text file—even if it already has a suffix. This will render the files unusable
with gretl: you’ll have to rename them manually, outside of the editor.

2genr also offers the inverse function to misszero, namely zeromiss, which replaces zeros in a given series with
the missing observation code.

16

http://ricardo.ecn.wfu.edu/gretl/gretl_data.html
http://ricardo.ecn.wfu.edu/gretl/gretl_data.html

2. Using a separate spreadsheet. This may be a good choice if you’re comfortable with
a particular spreadsheet. Of course if you use a spreadsheet you’re able to carry out
various transformations of the “raw” data with ease (adding things up, taking percentages
or whatever): note, however, that you can also do this sort of thing easily—perhaps more
easily—within gretl, by using the tools under the “Data, Add variables” menu and/or
“Variable, define new variable”.

If you take this option, please pay attention to the specification of what your spreadsheet
should look like before you save it in CSV format (section 9).

You may wish to establish a GRETL data set piece by piece, via incremental importation of
CSV data. This is supported as follows. When you have a datafile open already, and then
select the menu item “File, Open data, import CSV...” the program checks for conforma-
bility between the existing data set and the new import. If the data frequency, starting
observation and ending observation all seem to match, the new data are merged into the
data set. If not, an error message is printed and the import is refused. If you want to im-
port the new data in place of the existing data set, you can achieve this by first selecting
“File, Clear data set”.

3. Built-in spreadsheet. Under gretl’s “File, Create data set” menu you can choose the sort
of data set you want to establish (e.g. quarterly time series, cross-sectional). You will
then be prompted for starting and ending dates (or observation numbers) and the name
of the first variable to add to the data set. After supplying this information you will be
faced with a simple spreadsheet into which you can type data values. In the spreadsheet
window, clicking the right mouse button will invoke a popup menu which enables you
to add a new variable (column), to add an observation (append a row at the foot of the
sheet), or to insert an observation at the selected point (move the data down and insert a
blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace
using the spreadsheet’s “File, Apply changes” menu item.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or
formulas. Data transformations are done via the “Data” or “Variable” menus in the main
gretl window.

4. Selecting from a database. The remaining alternative is to establish your data set by
selecting variables from a database. GRETL comes with a database of US macroeconomic
time series and, as mentioned above, the program will reads RATS 4 databases.

Begin with gretl’s “File, Browse databases” menu item. This has three forks: “gretl native”,
“RATS 4” and “on database server”. You should be able to find the file bcih.bin in the
file selector that opens if you choose the “gretl native” option—this file is supplied with
the distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data (see www.
estima.com). If you do possess RATS data you should go into gretl’s “File, Preferences,
General” dialog, select the Databases tab, and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake
Forest University) under “on database server”. You can browse these remotely; you also
have the option of installing them onto your own computer. The initial remote databases
window has an item showing, for each file, whether it is already installed locally (and if
so, if the local version is up to date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into
gretl’s workspace by using the “Import” menu item in the database window.

17

www.estima.com
www.estima.com

Note: gretl has no problem compacting data series of relatively high frequency (e.g.
monthly) to a lower frequency (e.g. quarterly): this is done by averaging. But it has no
way of converting lower frequency data to higher. Therefore if you want to import series
of various different frequencies from a database into gretl you must start by importing a
series of the lowest frequency you intend to use. This will initialize your gretl data set to
the low frequency, and higher frequency data can be imported subsequently (they will be
compacted automatically). If you start with a high frequency series you will not be able
to import any series of lower frequency.

If you establish a data set by any means other than creating a data file and header file with
a text editor (that is, if you import CSV, use gretl’s spreadsheet, or select from a database) you
would be well advised to save the data in gretl’s native format before quitting the program.
You can do this via the “File, Save data...” menu item.

13 Panel data

Panel data (pooled cross-section and time-series) require special care. Here are some pointers.
Consider a data set composed of observations on each of n cross-sectional units (countries,

states, persons or whatever) in each of T periods. Let each observation comprise the values of
m variables of interest. The data set then contains mnT values.

The data should be arranged “by observation”: each row represents an observation; each
column contains the values of a particular variable. The data matrix then has nT rows and
m columns. That leaves open the matter of how the rows should be arranged. There are two
possibilities.3

• Rows grouped by unit. Think of the data matrix as composed of n blocks, each having
T rows. The first block of T rows contains the observations on cross-sectional unit 1 for
each of the periods; the next block contains the observations on unit 2 for all periods;
and so on. In effect, the data matrix is a set of time-series data sets, stacked vertically.

• Rows grouped by period. Think of the data matrix as composed of T blocks, each having
n rows. The first n rows contain the observations for each of the cross-sectional units
in period 1; the next block contains the observations for all units in period 2; and so on.
The data matrix is a set of cross-sectional data sets, stacked vertically.

You may use whichever arrangement is more convenient. The first is perhaps easier to keep
straight. If you use the second then of course you must ensure that the cross-sectional units
appear in the same order in each of the period data blocks.

In either case you can use the frequency field in the observations line of the data header file
(see section 9) to make life a little easier.

• Grouped by unit: Set the frequency equal to T . Suppose you have observations on 20
units in each of 5 time periods. Then this observations line is appropriate: 5 1.1 20.5
(read: frequency 5, starting with the observation for unit 1, period 1, and ending with the
observation for unit 20, period 5). Then, for instance, you can refer to the observation
for unit 2 in period 5 as 2.5, and that for unit 13 in period 1 as 13.1.

• Grouped by period: Set the frequency equal to n. In this case if you have observations
on 20 units in each of 5 periods, the observations line should be: 20 1.01 5.20 (read:
frequency 20, starting with the observation for period 1, unit 01, and ending with the
observation for period 5, unit 20). One refers to the observation for unit 2, period 5 as
5.02.

3If you don’t intend to make any conceptual or statistical distinction between cross-sectional and temporal
variation in the data you can arrange the rows arbitrarily, but this is probably wasteful of information.

18

If you decide to construct a panel data set using a spreadsheet program first, then bring the
data into GRETL as a CSV import, the program will (probably) not at first recognize the special
nature of the data. You can fix this by using the command setobs (see section 22) or the GUI
menu item “Sample, Set frequency, startobs...”.

Dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following
sorts: (a) dummies as unique identifiers for the cross-sectional units, and (b) dummies as
unique identifiers of the time periods. The former can be used, for instance, to allow the
intercept of the regression to differ across the units, the latter to allow the intercept to differ
across periods. (You will not want to include all of these dummies in a given regression!)

You can use two special functions to create such dummies. These are found under the
“Data, Add variables” menu in the GUI, or under the genr command in script mode or gretlcli.

1. “periodic dummies” (script command genr dummy). The common use for this command
is to create a set of periodic dummy variables up to the data frequency in a time-series
study (for instance a set of quarterly dummies for use in seasonal adjustment). But it
also works with panel data. Note that the interpretation of the dummies created by this
command differs depending on whether the data rows are grouped by unit or by period. If
the grouping is by unit (frequency T) the resulting variables are period dummies and there
will be T of them. For instance dummy 2 will have value 1 in each data row corresponding
to a period 2 observation, 0 otherwise. If the grouping is by period (frequency n) then n
unit dummies will be generated: dummy 2 will have value 1 in each data row associated
with cross-sectional unit 2, 0 otherwise.

2. “panel dummies” (script command genr paneldum). This creates all the dummies, unit
and period, at a stroke. The default presumption is that the data rows are grouped by
unit. The unit dummies are named du 1, du 2 and so on, while the period dummies are
named dt 1, dt 2, etc. The u (for unit) and t (for time) in these names will be wrong if the
data rows are grouped by period: to get them right in that setting use genr paneldum
-o (script mode only).

If a panel data set has the YEAR of the observation entered as one of the variables you can
create a periodic dummy to pick out a particular year, e.g. genr dum = (YEAR=1960). You can
also create periodic dummy variables using the modulus operator, %. For instance, to create
a dummy with value 1 for the first observation and every thirtieth observation thereafter, 0
otherwise, do

genr index
genr dum = ((index-1)%30) = 0

Using lagged values with panel data

If the time periods are evenly spaced you may want to use lagged values of variables in a
panel regression. In this case arranging the data rows by unit (stacked time-series) is definitely
preferable.

Suppose you create a lag of variable x1, using genr x1 1 = x1(-1). The values of this
variable will be mostly correct, but at the boundaries of the unit data blocks they will be
spurious and unusable. E.g. the value assigned to x1 1 for observation 2.1 is not the first lag
of x1 at all, but rather the last observation of x1 for unit 1.

If a lag of this sort is to be included in a regression you must ensure that the first observa-
tion from each unit block is dropped. One way to achieve this is to use Weighted Least Squares

19

(wls) using an appropriate dummy variable as weight. This dummy (call it lagdum) should have
value 0 for the observations to be dropped, 1 otherwise. In other words, it is complementary
to a dummy variable for period 1. Thus if you have already issued the command genr dummy
you can now do genr lagdum = 1 - dummy 1. If you have used genr paneldum you would
now say genr lagdum = 1 - dt 1. Either way, you can now do

wls lagdum y const x1 1 ...

to get a pooled regression using the first lag of x1, dropping all observations from period 1.
Another option is to use the smpl with the -o flag and a suitable dummy variable. Here

are illustrative commands, assuming the unit data blocks each contain 30 observations and we
want to drop the first row of each:

(* create index variable *)
genr index
(* create dum = 0 for every 30th obs *)
genr dum = ((index-1)%30) > 0
(* sample based on this dummy *)
smpl -o dum
(* recreate the obs. structure, for 56 units *)
setobs 29 1.01 56.29

You can now run regressions on the restricted data set without having to use the wls
command. If you plan to reuse the restricted data set you may wish to save it using the store
command (see section 22 below).

Illustration: the Penn World Table

The Penn World Table (homepage http://pwt.econ.upenn.edu/) is a rich macroeconomic
panel dataset, spanning 152 countries over the years 1950–1992. The data are available in
GRETL format; please see http://ricardo.ecn.wfu.edu/gretl/gretl_data.html (this is a
free download, although it is not included in the main GRETL package).

Script 1 below opens pwt56 60 89.dat, a subset of the pwt containing data on 120 coun-
tries, 1960–89, for 20 variables, with no missing observations (the full data set, which is also
supplied in the pwt package for GRETL, has many missing observations). Total growth of real
GDP, 1960–89, is calculated for each country and regressed against the 1960 level of real GDP,
to see if there is evidence for convergence.

14 Getting more data

Besides the data files included in the GRETL distribution and the Penn World Table mentioned
above, a large collection of data of various sorts is available in a form directly readable by GRETL

via the web page http://www.ecn.wfu.edu/gretl/gretl_data.html. You will find details
on that page. Data sources include the Board of Governors of the Federal Reserve System
(U.S. interest rates), the Federal Reserve Bank of St. Louis (numerous U.S. macroeconomic time
series, up to the present), The National Bureau of Economic Research (their “macro history”
data collection, plus some international and industry-level data sets), and the Bank of Japan.

In addition GRETL comes with some scripts that can be used to create databases using data
available via the Internet. These can be found in the utils subdirectory of the source package
(see section 1 above). To run the scripts you need to have perl installed on your computer, and
you need to be connected to the Internet.

20

http://pwt.econ.upenn.edu/
http://ricardo.ecn.wfu.edu/gretl/gretl_data.html
http://www.ecn.wfu.edu/gretl/gretl_data.html

Script 1: Example of use of Penn World Table

open pwt56_60_89.dat
(* for 1989 (last obs), lag 29 gives 1960, the first obs *)
genr gdp60 = RGDPL(-29)
(* find total growth of real GDP over 30 years *)
genr gdpgro = (RGDPL - gdp60)/gdp60
(* restrict the sample to a 1989 cross-section *)
smpl -r YEAR=1989
(* Convergence? Have countries with a lower base grown faster? *)
ols gdpgro const gdp60
(* result: No! Try inverse relationship *)
genr gdp60inv = 1/gdp60
ols gdpgro const gdp60inv
(* No again. Try dropping Africa? *)
genr afdum = CCODE = 1
genr afslope = afdum * gdp60
ols gdpgro const afdum gdp60 afslope2

15 Graphs and plots

A separate program, namely gnuplot, is called to generate graphs. Gnuplot is a very full-
featured graphing program with myriad options. It is available from www.gnuplot.org (but
note that a copy of gnuplot is bundled with the MS Windows version of GRETL). gretl gives
you direct access, via a graphical interface, to only a small subset of gnuplot’s options but it
tries to choose sensible values for you; it also allows you to take complete control over graph
details if you wish.

Under MS Windows you can click at the top left corner of a graph window for a pull-down
gnuplot menu that lets you choose various things (including copying the graph to the Windows
clipboard and sending it to a printer).

For full control over a graph, follow this procedure:

1. Close the graph window.

2. From the Session menu, choose “Add last graph”.

3. In the session icon window, right-click on the new graph icon and choose either “Edit
using GUI” or “Edit plot commands”.

The “Edit using GUI” item pops up a graphical controller for gnuplot which lets you fine-
tune various aspects of the graph. The “Edit plot commands” item opens an editor window
containing the actual gnuplot command file for generating the graph: this gives you full control
over graph details—if you know something about gnuplot. To find out more, see http://
ricardo.ecn.wfu.edu/gnuplot.html or www.gnuplot.org.

See also the entry for gnuplot in section 22 below—and the graph and plot commands
for “quick and dirty” ASCII graphs.

16 Monte Carlo simulations

GRETL offers (limited) support for Monte Carlo simulations. To do such work you should either
use the GUI client program in “script mode” (section 6 above), or use the command-line client.

21

www.gnuplot.org
http://ricardo.ecn.wfu.edu/gnuplot.html
http://ricardo.ecn.wfu.edu/gnuplot.html
www.gnuplot.org

Figure 4: gretl’s gnuplot controller

22

The command loop opens a special mode in which the program accepts commands to be
repeated a specified number of times. Within such a loop, only four commands can be used:
genr, ols, print and store. With genr and ols it is possible to do quite a lot. You exit
the mode of entering loop commands with endloop: at this point the stacked commands are
executed. Loops cannot be nested.

The ols command gives special output in a loop context: the results from each individual
regression are not printed, but rather you get a printout of (a) the mean value of each estimated
coefficient across all the repetitions, (b) the standard deviation of those coefficient estimates,
(c) the mean value of the estimated standard error for each coefficient, and (d) the standard
deviation of the estimated standard errors. This makes sense only if there is some random
input at each step.

The print command also behaves differently in the context of a loop. It prints the mean
and standard deviation of the variable, across the repetitions of the loop. It is intended for use
with variables that have a single value at each iteration, for example the error sum of squares
from a regression.

The store command (use only one of these per loop) writes out the values of the specified
variables, from each time round the loop, to the specified file. Thus it keeps a complete record
of the variables. This data file can then be read into the program and analysed.

A simple example of loop code is shown in Script 2.

Script 2: Example Monte Carlo code

(* create a blank data set with series length 50 *)
nulldata 50
genr x = uniform()
(* open a loop, to be repeated 100 times *)
loop 100

genr u = normal()
(* construct the dependent variable *)
genr y = 10*x + 20*u
(* run OLS regression *)
ols y const x
(* grab the R-squared value from the regression *)
genr r2 = $rsq
(* arrange for statistics on R-squared to be printed *)
print r2
(* save the individual coefficient estimates *)
genr a = coeff(const)
genr b = coeff(x)
(* and print them to file *)
store foo.dat a b

endloop

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates across the 100 rep-
etitions, and also for the R2 values for the 100 regressions. After running the loop, foo.dat,
which contains the individual coefficient estimates from all the runs, can be opened in GRETL to
examine the frequency distribution of the estimates in detail. Please note that while comment
lines are permitted in a loop (as shown in the example), they cannot run over more than one
line.

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data
set, nulldata 50 (for instance) opens an empty data set, with only a constant, with a series

23

length of 50. Constructed variables can then be added using the genr command.
See the seed command in section 22 for information on generating repeatable pseudo-

random series.

17 Iterated least squares

A further form of loop structure is provided, designed primarily for carrying out iterated least
squares. Greene (2000, ch. 11) shows how this method can be used to estimate nonlinear
models.

To open this second sort of loop you need to specify a condition rather than an uncondi-
tional number of times to iterate. This should take the form of the keyword while followed by
an inequality: the left-hand term should be the name of a variable that is already defined; the
right-hand side may be either a numerical constant or the name of another predefined variable.
For example,

loop while essdiff > .00001

Execution of the commands within the loop (i.e. until endloop is encountered) will continue
so long as the specified condition evaluates as true.

I assume that if you specify a “number of times” loop you are probably doing a Monte Carlo
analysis, and hence you’re not interested in the results from each individual iteration but
rather the moments of certain variables over the ensemble of iterations. On the other hand,
if you specify a “while” loop you’re probably doing something like iterated least squares, and
so you’d like to see the final result—as well, perhaps, as the value of some variable(s) (e.g. the
error sum of squares from a regression) from each time round the loop. The behavior of the
print and ols commands are tailored to this assumption. In a “while” loop print behaves
as usual; thus you get a printout of the specified variable(s) from each iteration. The ols
command prints out the results from the final estimation.

Script 3 uses a “while” loop to replicate the estimation of a nonlinear consumption function,
of the form C = α+βY γ+ε, as presented in Greene (2000, Example 11.3). This script is included
in the GRETL distribution under the name greene11 3.inp; you can find it in gretl under the
menu item “File, Open command file, practice file, Greene...”.

24

Script 3: Replicate Example 11.3 in Greene

open greene11_3.dat
(* run initial OLS *)
ols C 0 Y
genr essbak = $ess
genr essdiff = 1
genr b0 = coeff(Y)
genr gamma0 = 1
(* form the linearized variables *)
genr C0 = C + gamma0 * b0 * Yˆgamma0 * log(Y)
genr x1 = Yˆgamma0
genr x2 = b0 * Yˆgamma0 * log(Y)
(* iterate OLS till the error sum of squares converges *)
loop while essdiff > .00001

ols C0 0 x1 x2 -o
genr b0 = coeff(x1)
genr gamma0 = coeff(x2)
genr C0 = C + gamma0 * b0 * Yˆgamma0 * log(Y)
genr x1 = Yˆgamma0
genr x2 = b0 * Yˆgamma0 * log(Y)
genr ess = $ess
genr essdiff = abs(ess - essbak)/essbak
genr essbak = ess

endloop
(* print parameter estimates using their "proper names" *)
genr alpha = coeff(0)
genr beta = coeff(x1)
genr gamma = coeff(x2)
print alpha beta gamma

25

18 Program options and arguments: gretl

gretl (under MS Windows, gretlw32)

— Opens the program and waits for user input.

gretl datafile

— Starts the program with the specified datafile in its workspace. The data file may be in native
GRETL format, CSV format, or BOX1 format (see section 9 above). The program will try to detect
the format of the file and treat it appropriately. See also section 20 below for path-searching
behavior.

gretl --help (or gretl -h)

— Prints a brief summary of usage.

gretl --version (or gretl -v)

— Prints version identification for the program.

gretl --run scriptfile (or gretl -r scriptfile)

— Start the program and open a window displaying the specified script file, ready to run. See
section 20 below for path-searching behavior.

Some things in gretl are configurable under the “File, Preferences” menu.

• The user’s base directory for gretl-related files.

• The base directory for gretl’s shared files.

• The command to launch GNU R (see Appendix C).

• The directory in which to start looking for native gretl databases.

• The directory in which to start looking for RATS 4 databases.

• The IP number of the GRETL database server to access.

• The calculator and editor programs to launch from the toolbar.

• The monospaced font to be used in gretl screen output.

There are also some check boxes. Checking the “expert” box quells some warnings that are
otherwise issued. Unchecking “Tell me about gretl updates” stops gretl from attempting to
query the update server at start-up. Unchecking “Show gretl toolbar” turns the icon toolbar
off.

Settings chosen in this way are stored in a file named .gretlrc in the user’s home direc-
tory on unix-like systems, or in a file named gretl.rc in the user’s gretl directory (default
c:\userdata\gretl\user) under MS Windows.

26

19 Program options and arguments: gretlcli

gretlcli

— Opens the program and waits for user input.

gretlcli datafile

— Starts the program with the specified datafile in its workspace. The data file may be in native
GRETL format, CSV format, or BOX1 format (see section 9 above). The program will try to detect
the format of the file and treat it appropriately. See also section 20 below for path-searching
behavior.

gretlcli --help (or gretlcli -h)

— Prints a brief summary of usage.

gretlcli --version (or gretlcli -v)

— Prints version identification for the program.

gretlcli --run scriptfile (or gretlcli -r scriptfile)

— Execute the commands in scriptfile then hand over input to the command line. See section 20
below for path-searching behavior.

gretlcli --batch scriptfile (or gretlcli -b scriptfile)

— Execute the commands in scriptfile then exit. When using this option you will probably want
to redirect output to a file. See section 20 for path-searching behavior.

When using the --run and --batch options, the script file in question must call for a data file
to be opened. This can be done using the open command within the script. For backward com-
patibility with Ramanathan’s original ESL program another mechanism is offered (ESL doesn’t
have the open command). A line of the form:

(* ! myfile.dat *)

will (a) cause gretlcli to load myfile.dat, but will (b) be ignored as a comment by the original
ESL. Note the specification carefully: There is exactly one space between the begin comment
marker, “(*”, and the “!”; there is exactly one space between the “!” and the name of the data
file.

One further kludge enables gretl and gretlcli to get datafile information from the ESL “practice
files” included with the GRETL package. A typical practice file begins like this:

(* PS4.1, using data file DATA4-1, for reproducing Table 4.2 *)

This algorithm is used: if an input line begins with the comment marker, search it for the
string “DATA” (upper case). If this is found, extract the string from the “D” up to the next space
or comma, put it into lower case, and treat it as the name of a data file to be opened.

20 Path searching

When the name of a data file or script file is supplied to gretl or gretlcli on the command line
(sections 18 and 19), the file is looked for as follows:

27

1. “As is”. That is, in the current working directory or, if a full path is specified, at the
specified location.

2. In the user’s gretl directory. By default this is a directory named .gretl in the user’s
home account, under unix-like systems; under MS Windows it is by default a subdirectory
named user of the GRETL installation, e.g. c:\userdata\gretl\user.

3. In any immediate sub-directory of the user’s gretl directory.

4. In the case of a data file, search continues with the main GRETL data directory. By default
this is /usr/local/share/gretl/data on unix-like systems, or c:\userdata\gretl\data
under MS Windows. In the case of a script file, the search proceeds to the system script di-
rectory, by default /usr/local/share/gretl/scripts or c:\userdata\gretl\scripts.

5. In the case of data files the search then proceeds to all immediate sub-directories of the
main data directory.

Thus it is not necessary to specify the full path for a data or script file unless you wish
to override the automatic searching mechanism. (This also applies within gretlcli, when you
supply a filename as an argument to the open or run commands.)

When a command script contains an instruction to open a data file, the search order for
the data file is as stated above, except that the directory containing the script is also searched,
immediately after trying to find the data file “as is”.

MS Windows

Under MS Windows the default behavior of gretl and gretlcli is controlled by the configura-
tion file libgretl.cfg. This is first searched for in the directory containing the gretlcli exe-
cutable; if it is not found there it is looked for in the root directory of the current drive (i.e. as
\libgretl.cfg). This file specifies, in order, the system gretl directory, the user’s home gretl
directory and the path to the gnuplot executable. For example, it might read as follows:

c:\userdata\gretl
c:\userdata\gretl\user
c:\userdata\gp371w32\wgnupl32.exe

When GRETL for win32 is installed, a version of this file, appropriate to the user’s choice of
where to install the package, is written out automatically. You should not have to bother with
this file unless you should happen to want to move a GRETL installation. In that case you’ll have
to edit libgretl.cfg appropriately, maintaining its plain ASCII character and exact filename
(N.B. no stupid “.txt” extension as kindly supplied by MS Notepad!).

28

21 Tables of estimators and tests

The following are available under the Model menu in gretl’s main window. The correspond-
ing script command is shown in parentheses. For details consult the command’s entry in
section 22.

Estimator Comment

Ordinary Least Squares (ols) The workhorse estimator

Weighted Least Squares (wls) Heteroskedasticity, exclusion of selected
observations

HCCM (hccm) Heteroskedasticity corrected covariance matrix

Heteroskedasticity corrected (hsk) Weighted Least Squares based on predicted
error variance

Cochrane–Orcutt (corc) First-order autocorrelation

Hildreth–Lu (hilu) First-order autocorrelation

Autoregressive Estimation (ar) Higher-order autocorrelation (generalized
Cochrane–Orcutt)

Vector Autoregression (var) Systems of time-series equations

Cointegration test (coint) Long-run relationships between series

Two-Stage Least Squares (tsls) Simultaneous equations

Logit (logit) Binary dependent variable (logistic
distribution)

Probit (probit) Binary dependent variable (normal
distribution)

Rank Correlation (spearman) Correlation with ordinal data

The following are available under the Tests menu in a model window, after estimation.

Test command

Omit variables (F -test if OLS) omit

Add variables (F -test if OLS) add

Nonlinearity (squares) lmtest

Nonlinearity (logs) lmtest

Heteroskedasticity (White’s test) lmtest

Autocorrelation up to the data frequency lmtest -o

Chow (structural break) chow

CUSUM (parameter stability) cusum

ARCH (conditional heteroskedasticity) arch

Normality of residual testuhat

29

Additional tests under the Variable menu in the main window: augmented Dickey–Fuller test
(adf), runs test (runs).

30

22 Command Reference

Preamble: The commands defined below may be executed in the command-line client program,
gretlcli. They may also be placed in a “script” file for execution in the GUI, gretl, or entered
using the latter’s “console mode”. In most cases the syntax given below also applies when you
are presented with a line to type in a dialog box in the GUI (but see also gretl’s online help),
except that you should not type the initial command word—it is implicit from the context. One
other difference is that you should not type the -o flag for regression commands in GUI dialog
boxes: there is a menu item for displaying the coefficient variance–covariance matrix (which is
the effect of -o in regression commands).

The following conventions are used below:

• A typewriter font is used for material that you would type directly, and also for internal
names of variables.

• Terms in italics are place-holders: you should substitute something specific, e.g. you might
type income in place of the generic xvar.

• [-o] means that the flag -o is optional: you may type it or not (but in any case don’t type
the brackets).

• The phrase “estimation command” means any one of ols, hilu, corc, ar, arch, hsk, tsls,
wls, hccm, add, omit.

Section and Chapter references below are to Ramu Ramanathan (1998).

add

Usage: add varlist [-o]
Examples: add 5 7 9 add xx yy zz -o

Must be invoked after an estimation command. The variables in varlist will be added to the
previous model and the new model estimated. If more than one variable is added, then the
F statistic for the added variables will be printed (for the OLS procedure only) along with the
p-value for it. A p-value below 0.05 means that the coefficients are jointly significant at the
5 percent level. A number of internal variables may be retrieved using the genr command,
provided genr is invoked directly after this command. The -o flag causes the coefficient
variance–covariance matrix to be printed.

addto

Usage: addto modelID varlist
Example: addto 2 5 7 9

Works like the add command, except that you specify a previous model (using its ID number,
which is printed at the start of the model output) to take as the base for adding variables. The
example above adds variables number 5, 7 and 9 to Model 2.

adf

Usage: adf order varname
Example: adf 2 x1

Computes statistics for two Dickey-Fuller tests. In each case the null hypothesis is that the
variable in question exhibits a unit root.

31

The first is a t-test based on the model

(1− L)xt =m+ gxt−1 + εt
The null hypothesis is that g = 0.

The second (augmented) test proceeds by estimating an unrestricted regression (with regres-
sors a constant, a time trend, the first lag of the variable, and order lags of the first difference)
and a restricted version (dropping the time trend and the first lag). The test statistic is

F2,T−k =
(ESSr − ESSu)/2
ESSu/(T − k)

where T is the sample size and k the number of parameters in the unrestricted model.

Note that the critical values for these statistics are not the usual ones; a p-value range is
printed, when it can be determined.

ar

Usage: ar lags ; [-o] depvar indepvars
Example: ar 1 3 4 ; y 0 x1 x2 x3

Computes the estimates of a model using the generalized Cochrane–Orcutt iterative procedure
(see Section 9.5 of Ramanathan). Iteration is terminated when successive error sum of squares
do not vary by more than 0.005 percent or when 20 iterations have been done. lags is a list
of lags in the residuals, terminated by a semicolon. In the above example, the error term is
specified as

ut = ρ1ut−1 + ρ3ut−3 + ρ4ut−4 + et
depvar is the dependent variable and indepvars is the list of independent variables separated
by spaces. Use the number zero for a constant term. If the -o flag is present, the covari-
ance matrix of regression coefficients will be printed. Residuals of the transformed regression
are stored under the name uhat, which can be retrieved by genr. A number of other inter-
nal variables may be retrieved using the genr command, provided genr is invoked after this
command.

arch

Usage: arch order depvar indepvars [-o]
Example: arch 4 y 0 x1 x2 x3

This command tests the model for ARCH (Autoregressive Conditional Heteroskedasticity) of
the lag order specified in order, which must be an integer. If the LM test statistic has p-value
below 0.10, then ARCH estimation is also carried out. If the predicted variance of any obser-
vation in the auxiliary regression is not positive, then the corresponding û2 is used instead.
Weighted least square estimation is then performed on the original model. The flag -o calls
for the coefficient covariance matrix.

chow

Usage: chow obs
Examples: chow 25

chow 1988.1

Must follow an OLS regression. Creates a dummy variable which equals 1 from the split point
specified by obs to the end of the sample, 0 otherwise, and also creates interaction terms
between this dummy and the original independent variables. An augmented regression is run
including these terms and an F statistic is calculated, taking the augmented regression as the
unrestricted and the original as restricted. This statistic is appropriate for testing the null
hypothesis of no structural break at the given split point.

32

coint

Usage: coint order depvar indepvar
Examples: coint 2 y x

coint 4 y x1 x2

Carries out Augmented Dickey–Fuller tests on the null hypothesis that each of the variables
listed has a unit root, using the given lag order. The cointegrating regression is estimated, and
an ADF test is run on the residuals from this regression. The Durbin–Watson statistic for the
cointegrating regression is also given. Note that none of these test statistics can be referred to
the usual statistical tables.

corc

Usage: corc [-o] depvar indepvars
Examples: corc 1 0 2 4 6 7

corc -o 1 0 2 4 6 7
corc y 0 x1 x2 x3
corc -o y 0 x1 x2 x3

Computes the estimates of a model using the Cochrane–Orcutt iterative procedure (see Section
9.4 of Ramanathan) with depvar as the dependent variable and indepvars as the list of inde-
pendent variables separated by spaces. Use the number zero for a constant term. Iteration is
terminated when successive ρ values do not differ by more than 0.001 or when 20 iterations
have been done. If the -o flag is present, the covariance matrix of regression coefficients will
be printed. Residuals of this transformed regression are stored under the name uhat. A num-
ber of other internal variables may be retrieved using the genr command, provided genr is
invoked immediately after this command.

corr

Usage: corr corr varlist
Examples: corr 1 3 5 corr y x1 x2 x3

corr prints correlation coefficients for all pairs of variables in the data set (missing values
denoted by −999 are skipped). corr varlist prints the correlation coefficients for the variables
in the list.

corrgm

Usage: corrgm varname or varnumber [maxlag]

Prints the values of the autocorrelation function for the variable specified (see Ramanathan,
Section 11.7). It is thus ρ(ut , ut−s), where ut is the tth observation of the variable u and s is
the number of lags.

The partial autocorrelations are also shown: these are net of the effects of intervening lags.
The command also graphs the correlogram and prints the Box-Pierce Q statistic for testing the
null hypothesis that the series is “white noise”. This is asymptotically distributed as χ2 with
degrees of freedom equal to the number of lags used.

If an (optional) integer maxlag value is supplied the length of the correlogram is limited to at
most that number of lags, otherwise the length is determined automatically.

criteria

Usage: criteria ess T k
Example: criteria 23.45 45 8

33

Computes the model selection statistics (see Ramanathan, Section 4.3), given ess (error sum of
squares), the number of observations (T), and the number of coefficients (k). T, k, and ess may
be numerical values or names of previously defined variables.

cusum

Usage: cusum

Must follow the estimation of a model via OLS. Performs the CUSUM test for parameter sta-
bility. A series of (scaled) one-step ahead forecast errors is obtained by running a series of
regressions: the first regression uses the first k observations and is used to generate a predic-
tion of the dependent variable at observation at observation k + 1; the second uses the first
k+ 1 observations and generates a prediction for observation k + 2, and so on (where k is the
number of parameters in the original model). The cumulated sum of the scaled forecast errors
is printed and graphed. The null hypothesis of parameter stability is rejected at the 5 percent
significance level if the cumulated sum strays outside of the 95 percent confidence band.

The Harvey–Collier t statistic for testing the null hypothesis of parameter stability is also
quoted. See Chapter 7 of Greene’s Econometric Analysis for details.

delete

Usage: delete

Removes the last (highest numbered) variable from the current data set. Use with caution: no
confirmation is asked. Can be useful for getting rid of temporary dummy variables. There is
no provision for deleting any but the last variable.

diff

Usage: diff varlist

The first difference of each variable in varlist is obtained and the result stored in a new variable
with the prefix d . Thus diff x y creates the new variables d x = x(t) - x(t-1) and d y =
y(t) - y(t-1).

endloop

Terminates a simulation loop. See loop.

eqnprint

Must follow the estimation of a model via OLS. Prints the estimated model in the form of a
LATEX equation, to a file with a name of the form equation N.tex, where N is the number of
models estimated to date in the current session. This can be incorporated in a LATEX document.
See also tabprint.

fcast

Usage: fcast startobs endobs newvarname
fcast newvarname

Examples: fcast 1997.1 1999.4 f1
fcast f2

Must follow an estimation command. Forecasts are generated for the specified range (or the
largest possible range if no startobs and endobs are given) and the values saved as newvar-
name, which can be printed, graphed, or plotted. The right-hand side variables are those in
the original model. There is no provision to substitute other variables. If an autoregressive
error process is specified (for hilu, corc, and ar) the forecast is conditional one step ahead
and incorporates the error process.

34

fcasterr

Usage: fcasterr startobs endobs [-o]

After estimating an OLS model which includes a constant and at least one independent variable
(these restrictions may be relaxed at some point) you can use this command to print out fitted
values over the specified observation range, along with the estimated standard errors of those
predictions and 95 percent confidence intervals. If the -o flag is given the results will also
be displayed using gnuplot. The augmented regression method of Salkever (1976) is used to
generate the forecast standard errors.

fit

Usage: fit

The fit command (must follow an estimation command) is a shortcut for the fcast command.
It generates fitted values, in a series called autofit, for the current sample, based on the last
regression. In the case of time-series models, fit also pops up a gnuplot graph of fitted and
actual values of the dependent variable against time.

freq

Usage: freq var

Prints the frequency distribution for var (given by name or number); the results of a χ2 test
for normality are also reported. In interactive mode a gnuplot graph of the distribution is
generated.

genr

Usage: genr newvarname = formula

Creates new variables, usually through transformations of existing variables. See also diff,
logs, lags, ldiff, multiply and square for shortcuts.

Supported arithmetical operators are, in order of precedence: ˆ (exponentiation); *, / and %
(modulus or remainder); + and -.

The available Boolean operators are (again, in order of precedence): ! (negation), & (logical
AND), | (logical OR), >, <, = and != (not equal to). The Boolean operators can be used in
constructing dummy variables: for instance (x > 10) returns 1 if xt > 10, 0 otherwise.

Supported functions fall into these groups:

• Standard math functions: abs, cos, exp, int (integer part), ln (natural log: log is a
synonym), sin, sqrt.

• Statistical functions: mean (arithmetic mean), median, var (variance) sd (standard devia-
tion), sum, cov (covariance), corr (correlation coefficient).

• Time-series functions: lag, lead, diff (first difference), ldiff (log-difference, or first
difference of natural logs).

• Miscellaneous: cum (cumulate), sort, uniform, normal, misszero (replace the miss-
ing observation code in a given series with zeros), zeromiss (the inverse operation to
misszero).

All of the above functions with the exception of cov, corr, uniform and normal take as
their single argument either the name of a variable (note that you can’t refer to variables by
their ID numbers in a genr command) or a composite expression that evaluates to a variable

35

(e.g. ln((x1+x2)/2)). cov and corr both require two arguments, and return respectively the
covariance and the correlation coefficient between two named variables.

uniform() and normal(), which do not take arguments, return pseudo-random series drawn
from the uniform (0–100) and standard normal distributions respectively (see also the seed
command). Uniform series are generated using the C library function rand(); for normal
series the method of Box and Muller (1958) is used.

Besides the operators and functions just noted there are some special uses of genr:

• genr time creates a time trend variable (1,2,3, . . .) called time. genr index does the
same thing except that the variable is called index.

• genr dummy creates dummy variables up to the periodicity of the data. E.g. in the case
of quarterly data (periodicity 4), the program creates dummy_1 = 1 for first quarter and 0
in other quarters, dummy_2 = 1 for the second quarter and 0 in other quarters, and so on.

• genr paneldum creates a set of special dummy variables for use with a panel data set—
see section 13 above.

• Various internal variables defined in the course of running a regression can be retrieved
using genr, as follows:

$ess error sum of squares
$rsq unadjusted R2

$nobs number of observations
$df degrees of freedom
$trsq TR2 (sample size times R2)
$sigma standard error of residuals
$lnl log-likelihood (logit and probit models)
coeff(var) estimated coefficient for variable var
stderr(var) estimated standard error for variable var
rho(i) ith order autoregressive coefficient for residuals
vcv(xi,xj) covariance between coefficients for named variables xi and xj

Note: In the command-line program, genr commands that retrieve model-related data always
reference the model that was estimated most recently. This is also true in the GUI program, if
one uses genr in the “gretl console” or enters a formula using the “Define new variable” option
under the Variable menu in the main window. With the GUI, however, you have the option of
retrieving data from any model currently displayed in a window (whether or not it’s the most
recent model). You do this under the “Model data” menu in the model’s window.

Table 1 gives several examples of uses of genr with explanatory notes; here are a couple of
tips on dummy variables:

• Suppose x is coded with values 1, 2, or 3 and you want three dummy variables, d1 = 1 if
x = 1, 0 otherwise, d2 = 1 if x = 2, and so on. To create these, use the commands: genr
d1 = (x=1), genr d2 = (x=2), and genr d3 = (x=3).

• To create z = max(x,y) do genr d = x>y and genr z = (x*d)+(y*(1-d)).

36

Command Comment

genr y = x1ˆ3 x1 cubed
genr y = ln((x1+x2)/x3)
genr z = x>y sets z(t) to 1 if x(t) > y(t) else to 0
genr y = x(-2) x lagged 2 periods
genr y = x(2) x led 2 periods
genr y = diff(x) yt = xt − xt−1

genr y = ldiff(x) yt = log(xt)− log(xt−1), the instantaneous rate of growth of x
genr y = sort(x) sorts x in increasing order and stores in y
genr y = - sort(-x) sort x in decreasing order
genr y = int(x) truncate x and store its integer value as y
genr y = abs(x) store the absolute values of x
genr y = sum(x) sum x values excluding missing −999 entries
genr y = cum(x) cumulation: yt =

∑t
τ=1 xτ

genr aa = $ess set aa equal to the Error Sum of Squares from last regression
genr x = coeff(sqft) grab the estimated coefficient on the variable sqft from the

last regression
genr rho4 = rho(4) grab the 4th-order autoregressive coefficient from the last

model (presumes an ar model)
genr cvx1x2 = vcv(x1, x2) grab the estimated coefficient covariance of vars x1 and x2

from the last model
genr foo = uniform()/100 uniform pseudo-random variable in range 0–1
genr bar = 3 * normal() normal pseudo-random variable, µ = 0, σ = 3

Table 1: Examples of use of genr command

37

gnuplot

Usage: gnuplot [-o | -m] yvars xvar
gnuplot -z yvar xvar dummy

In the first case the yvars are graphed against xvar. If the flag -o is supplied the plot will
use lines; if the flag -m is given the plot uses impulses (vertical lines); otherwise points will be
used.

In the second case yvar is graphed against xvar with the points shown in different colors
depending on whether the value of dummy is 1 or 0.

To make a time-series graph, do gnuplot yvars time. If no variable named time already exists,
then it will be generated automatically. Special dummy variables will be created for plotting
quarterly and monthly data.

In interactive mode the result is piped to gnuplot for display. In batch mode a pair of files are
written, gpttmp01.dat and gpttmp01.plt. (With subsequent uses of gnuplot similar pairs
of files are created, with the number in the file name incremented.) The plots can be generated
later using the command gnuplot gpttmp.plt. (Under MS Windows, start wgnuplot and open
the file gpttmp01.plt.) To gain control over the details of the plot, edit the .plt file.

graph

Usage: graph [-o] var1 var2
graph var1 var2 var3

ACII graphics. In the first example, variable var1 (which may be a name or a number) is
graphed (y-axis) against var2 (x-axis) using ASCII symbols. -o flag will graph with 40 rows
and 60 columns. Without it, the graph will be 20 by 60 (for screen output). In the second
example, both var1 and var2 will be graphed (on y-axis) against var3. This is useful to graph
observed and predicted values against time. See also the gnuplot command.

hccm

Usage: hccm [-o] depvar indepvars

Presents OLS estimates with the heteroskedasticity consistent covariance matrix estimates for
the standard errors of regression coefficients using MacKinnon and White (1985) “jackknife”
estimates (see Ramanathan, Section 8.3). The coefficient covariance matrix is printed if the -o
flag is given.

help

help gives a list of available commands. help command describes command (e.g. help smpl).
You can type man instead of help if you like.

hilu

Usage: hilu [-o] depvar indepvars
Examples: hilu 1 0 2 4 6 7

hilu -o y 0 x1 x2 x3

hilu computes the estimates of a model using the Hildreth–Lu search procedure (fine tuned
by the CORC procedure) with depvar as the dependent variable and indepvars as the list of
independent variables separated by spaces. Use the number zero for a constant term. The
error sum of squares of the transformed model is graphed against the value of rho from
−0.99 to 0.99. If the -o flag is present, the covariance matrix of regression coefficients will be
printed. Residuals of this transformed regression are stored under the name uhat.

38

hsk

Usage: hsk [-o] depvar indepvars

Prints heteroskedasticity corrected estimates (see Ramanathan, ch. 8) and associated statistics.
The auxiliary regression predicts the log of the square of residuals (using squares of indepen-
dent variables but not their cross products) from which weighted least squares estimates are
obtained. If the -o flag is present, the covariance matrix of regression coefficients will be
printed. A number of internal variables may be retrieved using the genr command, provided
genr is invoked immediately after this command.

import

Usage: import csv file
import -o box file

Without the -o flag, brings in data from a comma-separated values (CSV) format file, such as
can easily be written from a spreadsheet program. The file should have variable names on the
first line and a rectangular data matrix on the remaining lines. Variables should be arranged
“by observation” (one column per variable; each row represents an observation). See section 9
of this manual for details.

With the -o flag, reads a data file in BOX1 format, as can be obtained using the Data Extraction
Service of the US Bureau of the Census.

info

info prints out any information contained in the header file corresponding to the current
datafile. (This information must be enclosed between (* and *), these markers being placed
on separate lines.)

labels

labels prints out the informative labels for any variables that have been generated using
genr, and any labels added to the data set via the GUI.

lags

Usage: lags varlist

Creates new variables which are lagged values of each of the variables in varlist. The number
of lagged variables equals the periodicity. For example, if the periodicity is 4 (quarterly), the
command lags x y creates x_1 = xt−1, x_2 = xt−2, x_3 = xt−3 and x_4 = xt−4. Similarly for
y . These variables must be referred to in the exact form, that is, with the underscore.

ldiff

Usage: ldiff varlist

The first difference of the natural log of each variable in varlist is obtained and the result
stored in a new variable with the prefix ld . Thus ldiff x y creates the new variables ld x
= ln(xt)− ln(xt−1) and ld y = ln(yt)− ln(yt−1).

list

Prints a listing of variables currently available. ls is a synonym.

39

lmtest

Usage: lmtest [-o]

This command must immediately follow an ols command. It prints the Lagrange multiplier
test statistics (and associated p-values) for nonlinearity and heteroskedasticity (White’s test)
or, if the -o flag is present, for serial correlation up to the periodicity. The corresponding
auxiliary regression coefficients are also printed out. See Ramanathan, Chapters 7, 8, and 9 for
details. Only the squared independent variables are used and not their cross products.

If the internal creation of squares causes exact multicollinearity, LM test statistics cannot be
obtained.

logit

Usage: logit depvar indepvars

Binomial logit regression. The dependent variable should be a binary variable. Maximum
likelihood estimates of the coefficients on indepvars are obtained via the EM or Expectation–
Maximization method (see Ruud, 2000, ch. 27). As the model is nonlinear the slopes depend
on the values of the independent variables: the reported slopes are evaluated at the means of
those variables. The χ2 statistic tests the null hypothesis that all coefficients are zero apart
from the constant.

If you want to use logit for analysis of proportions (where the dependent variable is the propor-
tion of cases having a certain characteristic, at each observation, rather than a 1 or 0 variable
indicating whether the characteristic is present or not) you should not use the logit com-
mand, but rather construct the logit variable (e.g. genr lgt p = log(p/(1 - p))) and use
this as the dependent variable in an OLS regression. See Ramanathan, ch. 12.

logs

Usage: logs varlist

The natural log of each of the variables in varlist is obtained and the result stored in a new
variable with the prefix l_ which is “el” underscore. logs x y creates the new variables l_x =
ln(x) and l_y = ln(y).

loop

Usage: loop number of times
loop while condition

Examples: loop 1000
loop while essdiff > .00001

Opens a special mode in which the program accepts commands to be repeated either a speci-
fied number of times, or so long as a specified condition holds true. Within a loop, only four
commands can be used: genr, ols, print and store (and store can’t be used in a while
loop). With genr and ols it is possible to do quite a lot. You exit the mode of entering loop
commands with endloop: at this point the stacked commands are executed. Loops cannot be
nested.

See sections 16 and 17 of this manual for details.

meantest

Usage: meantest var1 var2
meantest var1 var2 -o

Calculates the t statistic for the null hypothesis that the population means are equal for the
variables var1 and var2, and shows its p-value. Without the -o flag, the statistic is computed

40

on the assumption that the variances are equal for the two variables; with the -o flag the
variances are assumed to be unequal. (The flag will make a difference only if there are different
numbers of non-missing observations for the two variables.)

multiply

Usage: multiply x suffix varlist
Examples: multiply invpop pc 3 4 5 6

multiply 1000 big x1 x2 x3

The variables in varlist (referenced by name or number) are multiplied by x, which may be ei-
ther a numerical value or the name of a variable already defined. The products are named with
the specified suffix (maximum 3 characters). The original variable names are truncated first if
need be. For instance, suppose you want to create per capita versions of certain variables, and
you have the variable pop (population). A suitable set of commands is then:

genr invpop = 1/pop
multiply invpop pc income expend

which will create incomepc as the product of income and invpop, and expendpc as expend
times invpop.

nulldata

Usage: nulldata series length
Example: nulldata 100

Establishes a “blank” data set, containing only a constant, with periodicity 1 and the specified
number of observations. This may be used for simulation purposes: some of the genr com-
mands (e.g. genr uniform(), genr normal(), genr time) will generate dummy data from
scratch to fill out the data set. This command may be useful in conjunction with loop. See
also the seed command.

ols

Usage: ols [-o] depvar indepvars
Examples: ols 1 0 2 4 6 7

ols -o 1 0 2 4 6 7
ols y 0 x1 x2 x3
ols -o y 0 x1 x2 x3

Computes ordinary least squares estimates with depvar as the dependent variable and inde-
pvars as the list of independent variables. The -o flag will print the covariance matrix of
regression coefficients. The variables can be specified either by names or by their number.
Use the number zero for a constant term. The program also prints the p-values for t (two-
tailed) and F -statistics. A p-value below 0.01 indicates significance at the 1 percent level and
is denoted by ***. ** indicates significance between 1 and 5 percent and * indicates signif-
icance between 5 and 10 percent levels. Model selection statistics (described in Ramanathan,
Section 4.3) are also printed. A number of internal variables may be retrieved using the genr
command, provided genr is invoked immediately after this command.

omit

Usage: omit varlist [-o]
Examples: omit 5 7 9

omit xx yy zz

This command must be invoked after an estimation command. The variables in varlist will be
omitted from the previous model and the new model estimated. If more than one variable is

41

omitted, the Wald F -statistic for the omitted variables will be printed along with the p-value
for it (for the OLS procedure only). A p-value below 0.05 means that the coefficients are jointly
significant at the 5 percent level. A number of internal variables may be retrieved using the
genr command, provided genr is invoked immediately after this command. The coefficient
covariance matrix is printed if the -o flag is given.

omitfrom

Usage: omitfrom modelID varlist
Example: omitfrom 2 5 7 9

Works like the omit command, except that you specify a previous model (using its ID number,
which is printed at the start of the model output) to take as the base for omitting variables.
The example above omits variables number 5, 7 and 9 from Model 2.

open

Usage: open datafile

Opens a data file. If a data file is already open, it is replaced by the newly opened one. The
program will try to detect the format of the data file (native, CSV or BOX1) and treat it accord-
ingly.

pergm

Usage: pergm varname
pergm varname -o

Computes and displays (and if not in batch mode, graphs) the spectrum of the specified vari-
able. Without the -o flag the sample periodogram is given; with the flag a Bartlett lag window
of length 2

√
T (where T is the sample size). is used in estimating the spectrum (see Chapter

18 of Greene’s Econometric Analysis). When the sample periodogram is printed, a t-test for
fractional integration of the series (“long memory”) is also given: the null hypothesis is that
the integration order is zero.

plot

Examples: plot x1 plot x1 x2
plot 3 7 plot -o x1 x2

Plots data values for specified variables, for the range of observations currently in effect, using
ASCII symbols. Each line stands for an observation and the values are plotted horizontally. If
the flag -o is present, x1 and x2 are plotted in the same scale, otherwise x1 and x2 are scaled
appropriately. The -o flag should be used only if the variables have approximately the same
range of values (e.g. observed and predicted dependent variable). See also gnuplot.

print

Prints the values of the specified variables for the current data range (see smpl).

print prints the entire file by variables
print -o prints the entire file by observations in a tabular form
print 3 6 prints variables number 3 and 6 by variables
print x y z prints x, y and z by variables
print -o x y prints x and y by observations

probit

Usage: probit depvar indepvars

42

Probit regression. The dependent variable should be a binary variable. Maximum likelihood
estimates of the coefficients on indepvars are obtained via iterated least squares (the EM or
Expectation–Maximization method). As the model is nonlinear the slopes depend on the values
of the independent variables: the reported slopes are evaluated at the means of those variables.
The χ2 statistic tests the null hypothesis that all coefficients are zero apart from the constant.

Probit for analysis of proportions is not implemented in GRETL at this point.

pvalue

Usage interactively: pvalue
Usage in batch mode:

Normal distribution: pvalue 1 xvalue
t distribution: pvalue 2 df xvalue
χ2 distribution: pvalue 3 df xvalue
F distribution: pvalue 4 dfn dfd xvalue
Gamma distribution: pvalue 5 mean variance xvalue

Computes the area to the right of xvalue in the specified distribution. df is the degrees of
freedom, dfn is the d.f. for the numerator, dfd is the d.f. for the denominator. Instead of the
code numbers you can use z, t, X, F and G for the normal, t, χ2, F , and gamma distributions
respectively.

quit

Exits from the program, giving you the option of saving the output from the session on the
way out.

rhodiff

Usage: rhodiff rholist ; varlist
Examples: rhodiff .65 ; 2 3 4

rhodiff r1 r2 ; x1 x2 x3

Creates ρ-differenced counterparts of the variables (given by number or by name) in varlist
and adds them to the data set, using the suffix # for the new variables. Given variable v1 in
varlist, and entries r1 and r2 in rholist,

v1# = v1(t) - r1*v1(t-1) - r2*v1(t-2)

is created. The rholist entries can be given as numerical values or as the names of variables
previously defined.

run

Usage: run inputfile

If the file inputfile contains script commands, this command will execute them one by one.
This is a useful way of executing batch commands within an interactive session.

runs

Usage: runs varname

Carries out the nonparametric “runs” test for randomness of the specified variable. If you
want to test for randomness of deviations from the median, for a variable named x1 with a
non-zero median, you can do the following:

genr signx1 = x1 - median(x1)
runs signx1

43

scatters

Usage: scatters yvar ; xvarlist
scatters yvarlist ; xvar

Examples: scatters 1 ; 2 3 4 5
scatters 1 2 3 4 5 6 ; time

Plots pairwise scatters of yvar against all the variables in xvarlist, or of all the variables in
yvarlist against xvar. The first example above puts variable 1 on the y-axis and draws four
graphs, the first having variable 2 on the x-axis, the second variable 3 on the x-axis, and so
on. The second example plots each of variables 1 through 6 against time. Scanning a set of
such plots can be a useful step in exploratory data analysis. The maximum number of plots is
six; any extra variable in the list will be ignored.

seed

Usage: seed integer

Sets the seed for the pseudo-random number generator for the uniform() and normal()
functions (see the genr command). By default the seed is set when the program is started,
using the system time. If you want to obtain repeatable sequences of pseudo-random numbers
you will need to set the seed manually.

setobs

Usage: setobs periodicity startobs
Examples: setobs 4 1990.1

setobs 12 1978.03
setobs 20 1.01

Use this command to force the program to interpret the current data set as time series or
panel, when the data have been read in as simple undated series. periodicity must be an
integer; startobs is a string representing the date or panel ID of the first observation. See also
sections 9 and 13 of this manual.

shell

Usage: ! shellcommand

A ! at the beginning of a script command line is interpreted as an escape to the user’s shell.
Thus arbitrary shell commands can be executed from within the program (not available under
MS Windows).

sim

Usage: sim startobs endobs y a0 a1 a2 . . .

Simulates values for y for the periods startobs through endobs. The variable y must have been
defined earlier with appropriate initial values. The formula used is

y(t) = a0(t) + a1(t)*y(t-1) + a2(t)*y(t-2) + ...

The ai(t) may either be numerical constants or variable names previously defined.

Examples:

sim 1979.2 1983.1 y 0 0.9 [generates y(t) = 0.9*y(t-1)]
sim 15 25 y 10 0.8 x [generates y(t) = 10 + 0.8*y(t-1) + x(t)*y(t-2)]

44

smpl

Usage: smpl startobs endobs
smpl -o dummyvar
smpl -o
smpl -r Boolean expression

Resets the sample range. In the first form startobs and endobs must be consistent with the
periodicity of the data. In the second form dummyvar must be an indicator variable with
values 0 or 1 at each observation; the sample will be restricted to observations where the value
is 1. The third form, smpl -o, drops all observations for which values of one or more variables
are missing. The fourth form (-r) restricts the sample to observations that satisfy the given
Boolean condition.
smpl 3 10 data with periodicity 1
smpl 1950 1990 annual data, periodicity 1
smpl 1960.2 1982.4 quarterly data
smpl 1960.04 1985.10 monthly data
smpl 1960.2 ; keep endobs unchanged
smpl ; 1984.3 keep startobs unchanged
smpl -o dum1 draw sample of observations where dum1=1
smpl -r income>30000 sample cases where income has a value greater than 30000.

One point should be noted about the -o and -r forms of smpl: Any “structural” information
in the data header file (regarding the time series or panel nature of the data) is lost when this
command is issued. You may reimpose structure with the setobs command.

spearman

Usage: spearman x y [-o]

Prints Spearman’s rank correlation coefficient for the two variables x and y . The variables do
not have to be ranked manually in advance; the function takes care of this. If the -o flag is
supplied, the original data and the ranked data are printed out side by side.

The automatic ranking is from largest to smallest (i.e. the largest data value gets rank 1). If
you need to invert this ranking, create a new variable which is the negative of the original first.
For example:

genr altx = -x
spearman altx y

square

Usage: square [-o] x y

Generates new variables which are squares and cross products of selected variables (-o will
create the cross products). For the above example, new variables created will be sq_x = x2,
sq_y = y2 and x_y = xy . If a particular variable is a dummy variable it is not squared because
we will get the same variable.

store

Usage: store datafile [flag]
store datafile [flag] varlist

datafile is the name of the file in which the values should be stored. A header file (datafile.hdr)
is also created, and if one or more of the variables has an explanatory “label” defined, a labels
file (datafile.lbl) is generated.

If varlist is absent, the values of all the variables in the current data set will be stored.

45

By default storage is by observations, in native GRETL ASCII (plain text) format. There are four
valid (mutually exclusive) flags:

-z The default format, but gzip compressed. The suffix .gz is automatically added to the
name of the data file.

-o Store the data by variables, in binary format using double precision.

-s Store the data by variables, in binary format using single precision.

-c Store the data in CSV (comma-separated values) format. Such data can be read directly
by spreadsheet programs.

-r Store the data in GNU R format.

-m Store the data in GNU Octave format.

summary

summary print summary statistics for all variables in the file
summary 3 7 9 summary statistics for variables number 3, 7, and 9
summary x y z summary statistics for the variables x, y, and z

Output consists of the mean, standard deviation (sd), coefficient of variation (= sd/mean),
median, minimum, maximum, skewness coefficient, and excess kurtosis.

tabprint

Must follow the estimation of a model via OLS. Prints the estimated model in the form of a LATEX
tabular environment, to a file with a name of the form model N.tex, where N is the number of
models estimated to date in the current session. This can be incorporated in a LATEX document.
See also eqnprint.

testuhat

Usage: testuhat

Must follow a model estimation command. Gives the frequency distribution for the residual
from the model along with a χ2 test for normality.

tsls

Usage: tsls depvar varlist1 ; varlist2
Example: tsls y1 0 y2 y3 x1 x2 ; 0 x1 x2 x3 x4 x5 x6

This command computes two-stage least squares (TSLS) estimates of parameters. depvar is
the dependent variable, varlist1 is the list of independent variables (including right-hand side
endogenous variables) in the structural equation for which TSLS estimates are needed. varlist2
is the combined list of exogenous and predetermined variables in all the equations. If varlist2
is not at least as long as varlist1, the model is not identified. The -o flag will print the co-
variance matrix of the coefficients. In the above example, the ys are the endogenous variables
and the xs are the exogenous and predetermined variables. A number of internal variables
may be retrieved using the genr command, provided genr is invoked immediately after this
command.

var

Usage: var order depvar indepvar
Examples: var 4 x1 const time x2 x3

var 3 1 0 2 3 4

46

Sets up and estimates (via OLS) a vector autoregression. The first argument specifies the lag
order, then follows the setup for the first equation, as in the ols command. Don’t include
lags among the elements of the indepvar list—they will be added automatically. A regression
will be run for each variable in the list, excluding the constant, the time trend and any dummy
variables. Output for each equation includes F -tests for zero restrictions on all lags of each of
the variables, and an F -test for the maximum lag.

vartest

Usage: vartest var1 var2

Calculates the F statistic for the null hypothesis that the population variances for the variables
var1 and var2 are equal, and shows its p-value.

wls

Usage: wls [-o] weightvar depvar indepvars

Weighted least squares estimates are obtained using weightvar as the weight, depvar as the
dependent variable and indepvars as the list of independent variables. More specifically, an
OLS regression is run on weightvar*depvar against weight*indepvars. If the weightvar is a
dummy variable, this is equivalent to eliminating all observations with the number zero for
weightvar. The flag -o will print the covariance matrix of coefficients. A number of internal
variables may be retrieved using the genr command, provided genr is invoked immediately
after this command.

47

23 Troubleshooting gretl

As I steer GRETL towards a “stable” release (version 1.0) I welcome any reports of bugs in the
program. I think you are unlikely to find bugs in the actual calculations done by GRETL (although
this statement does not constitute any sort of warranty). You may, however, come across bugs
or oddities in the behavior of the graphical interface. Please remember that the usefulness of
bug reports is greatly enhanced if you can be as specific as possible: what exactly went wrong,
under what conditions, and on what operating system? If you saw an error message, what
precisely did it say? (You needn’t bother, though, to quote the memory address numbers given
in any crash reports from MS Windows—these won’t mean anything to me.)

As mentioned above, GRETL calls some other programs to accomplish certain tasks (gnuplot
for graphing, LATEX for high-quality typesetting of regression output, GNU R). If something goes
wrong with such external links, it is not always easy to produce an informative error message
window. If such a link fails when accessed from the gretl graphical interface, you may be
able to get more information by starting gretl from the command prompt (e.g. from an xterm
under the X window system, or from a “DOS box” under MS Windows, in which case type
gretlw32.exe), rather than via a desktop menu entry or icon. Additional error messages may
be displayed on the terminal window.

Also please note that for most external calls, GRETL assumes that the programs in question
are available in your “path”—that is, that they can be invoked simply via the name of the
program, without supplying the program’s full location.4 Thus if a given program fails, try the
experiment of typing the program name at the command prompt, as shown below.

Graphing Typsetting GNU R

X window system gnuplot latex, xdvi R
MS Windows wgnupl32.exe latex, xdvi RGui.exe

If the program fails to start from the prompt, it’s not a GRETL issue but rather that the
program’s home directory is not in your path, or the program is not installed (properly). For
details on modifying your path please see the documentation or online help for your operating
system or shell.

24 The command line interface

The GRETL package includes the command-line program gretlcli. This is essentially an updated
version of Ramu Ramanathan’s ESL. On unix-like systems it can be run from the console, or
in an xterm (or similar). Under MS Windows it can be run in a “DOS box”. gretlcli has its own
help file, which may be accessed by typing “help” at the prompt. It can be run in batch mode,
sending outout directly to a file (see section 19 above).

If gretlcli is linked to the readline library (this is automatically the case in the MS Win-
dows version; also see Appendix B), the command line is recallable and editable, and offers
command completion. You can use the Up and Down arrow keys to cycle through previously
typed commands. On a given command line, you can use the arrow keys to move around, in
conjunction with Emacs editing keystokes.5 The most common of these are:

4The exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is
given.

5Actually, the key bindings shown below are only the defaults; they can be customized. See http://cnswww.
cns.cwru.edu/˜chet/readline/readline.html.

48

http://cnswww.cns.cwru.edu/~chet/readline/readline.html
http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Ctrl-a go to start of line
Ctrl-e go to end of line
Ctrl-d delete character to right

where “Ctrl-a” means press the “a” key while the “Ctrl” key is also depressed. Thus if you want
to change something at the beginning of a command, you don’t have to backspace over the
whole line, erasing as you go. Just hop to the start and add or delete characters.

If you type the first letters of a command name then press the Tab key, readline will attempt
to complete the command name for you. If there’s a unique completion it will be put in place
automatically. If there’s more than one completion, pressing Tab a second time brings up a
list.

The rest of this section is given over to the changes in gretlcli relative to Ramu Ramanathan’s
original ESL. Command scripts developed for ESL should be usable with gretlcli with few or no
changes: the only things to watch for are multi-line commands and the freq command, both
discussed below.

Change of syntax

There is only one significant change. In ESL, a semicolon is used as a terminator for many
commands. I decided to remove this in gretlcli. Semicolons are simply ignored, apart from a
few special cases where they have a definite meaning: as a separator for two lists in the ar
and tsls commands, and as a marker for an unchanged starting or ending observation in the
smpl command.

In ESL semicolon termination gives the possibility of breaking long commands over more
than one line; in gretlcli this is done by putting a trailing backslash \ at the end of a line that
is to be continued.

Change in command-line arguments

The command-line syntax for running a batch job is simplified. For ESL you type, e.g.

esl -b datafile <inputfile >outputfile

For gretlcli you type:

gretlcli -b inputfile >outputfile

The inputfile is treated as a program argument; it should specify a datafile to use internally,
using the syntax open datafile or the special comment (* ! datafile *)

Commands missing from gretlcli

I have not implemented the commands designed to make working interactively at the DOS
command prompt a bit easier (scroll and edit). I presume that with the new GUI these will
not be needed, and that people who choose to use the command-line interface interactively
will probably be running it in a proper scrollable terminal window (e.g. xterm).

Commands redefined in gretlcli

A few commands have been simplified, or augmented, or their output has been changed some-
what.

• freq: At present you can’t specify particular ranges as in esl. A chi-square test for
normality has been added.

49

• genr: The functions cov, corr, median, var and vcv have been added.

• smpl: The -o switch sets the sample using a dummy variable.

• store: The -o switch now saves the data by variable in binary format. There are three
new switches: -z invokes gzip compression; -c saves in CSV format; -r saves in GNU R
format; -m saves in GNU Octave format.

The output from many commands is formatted a little differently.

New commands added to gretlcli

These are described in detail in section 22. They are briefly summarized in Table 2.

adf Augmented Dickey-Fuller test
chow Chow test for structural break
coint Cointegration test
delete Drop the last variable from the data set
diff Shortcut for generating first differences
endloop Terminate a Monte Carlo simulation loop
eqnprint Print OLS model as LATEX equation
fcasterr Forecasts with standard errors
import Open datafile in comma-separated values (CSV) format
info Display any info on data in header file
labels Display explanatory labels for vars (if any)
ldiff Shortcut for generating log-differences
logit Logit model
loop Start a Monte Carlo simulation loop
markers Add case markers to data set
multiply Shortcut for batch multiplying variables
nulldata Set up blank “dummy” data set (for simulations)
open Open an esl format datafile
pergm Generate periodogram
probit Probit model
runs Runs test of randomness
seed Seed the random number generator
setobs Adjust the data frequency and starting date
spearman Rank correlation coefficient
tabprint Print OLS model as LATEX table

Table 2: New commands in gretlcli

Some of the new features added to gretlcli

• Specifying lags: You don’t have to create lagged variables in advance of a regression. The
syntax foo(-1) in a regression list will cause the first lag of foo (if foo exists) to be
generated and added to the data set.

• You can switch data files without quitting gretlcli. If a data file has already been read,
using the open command will replace it with a new one (after a prompt for whether this
is really wanted).

50

• You can assign “labels” to variables: explanatory or descriptive tags of up to 128 charac-
ters. These go in a file with the same basename as the datafile plus the suffix .lbl. One
variable per line, the name of the variable first, followed by white space, followed by the
label. These labels will be read if they’re present and can be retrieved with the labels
command.

51

25 Assessing program accuracy: the NIST datasets

The U.S. National Institute of Standards and Technology (NIST) publishes a set of statistical
reference datasets. The object of this project is to “improve the accuracy of statistical software
by providing reference datasets with certified computational results that enable the objective
evaluation of statistical software”.

As of May 2000 the website for the project can be found at:
http://www.nist.gov/itl/div898/strd/general/main.html

while the datasets are at
http://www.nist.gov/itl/div898/strd/general/dataarchive.html
For testing GRETL I have made use of the datasets pertaining to Linear Regression and Uni-

variate Summary Statistics (the others deal with ANOVA and nonlinear regression).
I quote from the NIST text “Certification Method & Definitions” regarding their certified

computational results (emphasis added):

For all datasets, multiple precision calculations (accurate to 500 digits) were made
using the preprocessor and FORTRAN subroutine package of Bailey (1995, avail-
able from NETLIB). Data were read in exactly as multiple precision numbers and all
calculations were made with this very high precision. The results were output in
multiple precision, and only then rounded to fifteen significant digits. These mul-
tiple precision results are an idealization. They represent what would be achieved
if calculations were made without roundoff or other errors. Any typical numerical
algorithm (i.e. not implemented in multiple precision) will introduce computational
inaccuracies, and will produce results which differ slightly from these certified val-
ues.

It is not to be expected that results obtained from ordinary statistical packages will agree
exactly with NIST’s multiple precision benchmark figures. But the benchmark provides a very
useful test for egregious errors and imprecision.

In Table 3 below, “OK” means that GRETL’s output agrees—to the precision given by the
program, which is less than the 15 significant digits given by NIST—with the certified values
for all the NIST statistics, which include regression coefficients and standard errors, sum of
squared residuals or error sum of squares (ESS), standard error of residuals, F statistic and R2.

As can be seen from the table, GRETL does a good job of tracking the certified results. (Total
run time for the tests was 0.195 seconds on a 333MHz i686 machine running GNU/Linux.)
With the Filip data set, where the model is

yt = β0 + β1xt + β2x2
t + β3x3

t + · · · + β10x10
t + ε

GRETL refuses to produce estimates due to a high degree of multicollinearity (the popular com-
mercial econometrics program Eviews 3.1 also baulks at this regression). Other than that, the
program produces accurate coefficient estimates in all cases.

In the NoInt1 and NoInt2 datasets there is a methodological disagreement over the calcu-
lation of the coefficient of determination, R2, where the regression does not have an intercept.
GRETL reports the square of the correlation coefficient between the fitted and actual values of
the dependent variable in this case, while the NIST figure is

R2 = 1− ESS∑
y2

There is no universal agreement among statisticians on the “correct” formula (see for instance
the discussion in Ramanathan, 1998, pp. 163–4). Eviews 3.1 produces a different figure again
(which has a negative value for the NoInt test files). The figure chosen by NIST was obtained
for these regressions using the command

52

http://www.nist.gov/itl/div898/strd/general/main.html
http://www.nist.gov/itl/div898/strd/general/dataarchive.html

Dataset Model GRETL performance

Norris Simple linear regression OK

Pontius Quadratic OK

NoInt1 Simple regression, no intercept OK (but see text)

NoInt2 Simple regression, no intercept OK (but see text)

Filip 10th degree polynomial Complains of excessive multicollinearity, no
estimates produced

Longley Multiple regression, six
independent variables

OK

Wampler1 5th degree polynomial OK

Wampler2 5th degree polynomial OK

Wampler3 5th degree polynomial OK

Wampler4 5th degree polynomial OK

Wampler5 5th degree polynomial OK

Table 3: NIST linear regression tests

genr r2alt = 1 - $ess/sum(y * y)

and the numbers thus obtained were in agreement with the certified values, up to GRETL’s
precision.

As for the univariate summary statistics, the certified values given by NIST are for the
sample mean, sample standard deviation and sample lag-1 autocorrelation coefficient. NIST
note that the latter statistic “may have several definitions”. The certified value is computed as

r1 =
∑T

2 (yt − ȳ)(yt−1 − ȳ)∑T
1 (yt − ȳ)2

while GRETL gives the correlation coefficient between yt and yt−1. For the purposes of compar-
ison, the NIST figure was computed within GRETL as follows:

genr y1 = y(-1)
genr ybar = mean(y)
genr devy = y - ybar
genr devy1 = y1 - ybar
genr ssy = sum(devy * devy)
smpl 2 ;
genr ssyy1 = sum(devy * devy1)
genr rnist = ssyy1 / ssy

The figure rnist was then compared with the certified value.
With this modification, all the summary statistics were in agreement (to the precision given

by GRETL) for all datasets (PiDigits, Lottery, Lew, Mavro, Michelso, NumAcc1, NumAcc2,
NumAcc3 and NumAcc4).

53

Appendix A: Crash course in econometrics

Introduction

This highly condensed discussion is no substitute for a proper training in econometrics, but
hopefully it may serve to orient people without an econometrics background who nonetheless
have some interest in experimenting with GRETL, or even hacking on it (dream on!).

The substance of econometrics is the quantification of relationships between economic vari-
ables using statistical methods. The larger purposes served by this work include forecasting,
policy analysis, and the assessment or refinement of economic theories.

Much of econometrics is based on the classical statistical paradigm of sampling theory.
Econometric relationships are generally represented as stochastic equations, the simplest of
which is the simple linear regression model

yt = α+ βxt + εt

This model represents the dependent variable, y , at observation t, as a linear function (with
intercept α and slope β) of a single independent variable, xt , plus a random “error” or “distur-
bance” term εt . The random term may be thought of as summing up various influences on yt
not specified in the equation, or as reflecting inherently stochastic behavior in yt , or in various
other ways.

The task of econometric estimation is to provide estimates of the parameters α and β (and
the variance, σ 2, of the error term), given some actual data on x and y .

Least Squares

Provided that the distribution of ε satisfies certain conditions (it has a mean or expected value
of zero; it has a constant variance; it is uncorrelated across observations; it is uncorrelated
with the independent variable, x), the Gauss–Markov Theorem tells us that optimal estimates
of the regression parameters are delivered by the method of least squares.

Let the least-squares estimates of α and β be denoted by a and b: we then represent the
equation “fitted” via least squares as

ŷt = a+ bxt

We define the regression “residual” as yt − ŷt , the difference between actual y at observation
t and the “fitted” or predicted value (which lies on the least-squares regression line). The least
squares method consists in finding the specific coefficient values a and b which produce the
smallest possible sum of squared residuals. Provided the equation in view is indeed linear,
this is just an exercise in the differential calculus. The sum of squared residuals (or estimated
errors), ESS, is a function of a and b (and the data). One takes the partial derivatives of ESS
with respect to both a and b and sets them to zero, then solves the resulting two equations
for the implied a and b values. The same principle extends to higher-dimensional systems.

Population and sample

On the classical sampling paradigm, the actual observed data (xt , yt) from any given period
are conceived as a particular sample realization of the (potentially infinite) population of xt , yt
pairs that could have been observed, given different possible “drawings” from the distribution
of the error term, εt , in each sub-period. Application of the least-squares method guarantees
the “best fit” (in a well-defined sense) to any given set of sample data, but data from any finite
sample may be more or less unrepresentative of the larger population from which they are
drawn.

54

One sort of question of interest in econometrics is: Given that the conditions of optimal-
ity of the least-squares estimates are satisfied, how much confidence can one have that the
coefficients derived via least squares lie within a specified distance of the “true” underlying
parameters that characterize the data-generating process (DGP) itself? This is the issue of
“confidence intervals.” As a rough rule of thumb, a 95 percent confidence interval for a pa-
rameter can be constructed as the point estimate plus-or-minus two standard errors: that is
(again, roughly) one can have 95 percent confidence that a given coefficient estimate is within
2 standard errors of the corresponding unknown parameter. Standard errors for coefficient
estimates are reported routinely within GRETL.

One is also interested in hypothesis tests: For instance, given a certain non-zero value for a
least-squares regression coefficient, how confident can we be that the corresponding unknown
parameter is non-zero? It’s always possible that even if x and y are “truly” statistically inde-
pendent, one derives a non-zero correlation between observations of these variables in a finite
sample by the “luck of the draw.” The larger the sample, and the larger the (absolute value of
the) sample correlation, presumably the smaller the probability that this correlation could be
a “luck of the draw” phenomenon.

So-called “p-values” for hypothesis tests (reported in various contexts within GRETL) address
this issue: the p-value is the probability of observing a sample effect of the given, observed
magnitude or greater, conditional on there being no real effect at the population level. Thus
a small p-value counts against the Null Hypothesis (no real effect). If the p-value for a given
coefficient estimate is less than α one says that the coefficient is “statistically significant” at
the α level (e.g. a coefficient with a p-value < .05 is significant at the 5 percent level).

Regression pathologies

Two other questions of interest in econometrics are: How can we tell if the conditions for
optimality of the least squares estimates are not satisfied? And if it appears these conditions
are violated, what better alternatives to least squares are available?

GRETL offers a battery of tests and alternative estimators. The tests are available under the
menus in the model window after running a regression; the alternative estimators are under
the Model menu in the main window, while details on their use are in the online help file.

I can’t hope to teach much about these topics here. Please consult, for instance, Ra-
manathan (1998) or, for a comprehensive treatment, Greene (2000). Ruud (2000) is also a
rather comprehensive resource.

Linearity: how restrictive?

As mentioned above, the least squares regression routines in GRETL presuppose a linear model.
This is not quite as restrictive as it may seem. We require an equation that is linear in its
parameters, but this does not necessarily mean that it is linear in the variables of interest.
For example, all of the following equations represent nonlinear relationships between y and x
that can readily be estimated using OLS or similar:

yt = α+ β(1/xt)+ εt
yt = α+ βxt + γx2

t + εt
yt = α+ β logxt + εt

logyt = α+ β logxt + εt
Of course there are nonlinear relationships that cannot be reduced to linearity by this sort

of change of variables: OLS cannot deal with these; more complex estimators are required.
Of these additional estimators, GRETL offers only the logit and probit models for a binomial

55

dependent variable (but see also section 17 above for the use of iterated least squares in
estimating nonlinear models). As mentioned above, GRETL can be complemented by GNU R or
GNU Octave for further analysis of nonlinear relationships.

Appendix B: Technical notes

GRETL is written in the C programming language. I have abided as far as possible by the
ISO/ANSI C Standard (C89), although the graphical user interface and some other components
necessarily make use of platform-specific extensions.

GRETL is being developed under Linux. The shared library and command-line client should
compile and run on any platform that supports ISO/ANSI C and has the zlib compression
library installed. The homepage for zlib can be found at http://www.info-zip.org/pub/
infozip/zlib/. If the GNU readline library is found on the host system this will be used for
gretcli, providing a much enhanced editable command line. You can find readline at http:
//cnswww.cns.cwru.edu/˜chet/readline/rltop.html.

The graphical client program should compile and run on any system that, in addition to
the above requirements, offers GTK version 1.2.3 or higher (see www.gtk.org).

GRETL calls gnuplot for graphing. You can find gnuplot at www.gnuplot.org. As of this
writing the curent version is 3.7.1.

Some features of GRETL (the built-in spreadsheet, the “session” icon window, some file selec-
tion dialogs) make use of Adrian Feguin’s gtkextra library. The GRETL source package includes
a copy of the relevant gtkextra code, but if a sufficiently recent version of the gtkextra shared
library is detected on the host system this will be used instead, reducing the size of the GUI
executable. You can find gtkextra at gtkextra.sourceforge.net.

A binary version of the program is available for the Microsoft Windows platform (32-bit
version, i.e. Windows 95 or higher). This version was cross-compiled under Linux using mingw
(the GNU C compiler, gcc, ported for use with win32) and linked against the Microsoft C library,
msvcrt.dll. It uses Tor Lillqvist’s port of GTK to win32. Mingw lives at www.mingw.org and
Tor’s pages can be found at http://user.sgic.fi/˜tml/gimp/win32/. The (free, open-
source) Windows installer program is courtesy of Jordan Russell (www.jrsoftware.org).

Extending the programs

I’m hopeful that some users with coding skills may consider GRETL sufficiently interesting to
be worth improving and extending. To date I have not attempted to document the libgretl API
(other than via the header files you’ll find in the lib/src subdirectory of the source package).
But I welcome email on this subject and if there’s sufficient interest I’ll put some time into
documentation.

Appendix C: Advanced econometric analysis with free software

As mentioned in the main text, GRETL offers a reasonably full selection of least-squares based
estimators, plus a few additional estimators sych as (binomial) logit and probit. Advanced
users may, however, find GRETL’s menu of statistical routines restrictive.

No doubt some advanced users will prefer to write their own statistical code in a funda-
mental computer language such as C, C++ or Fortran. Another option is to use a relatively
high-level language that offers easy matrix manipulation and that already has numerous sta-
tistical routines built in, or available as add-on packages. If the latter option sounds attractive,
and you are interested in using free, open source software, I would recommend taking a look

56

http://www.info-zip.org/pub/infozip/zlib/
http://www.info-zip.org/pub/infozip/zlib/
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
www.gtk.org
www.gnuplot.org
gtkextra.sourceforge.net
www.mingw.org
http://user.sgic.fi/~tml/gimp/win32/
www.jrsoftware.org

at either GNU R (www.r-project.org) or GNU Octave (www.octave.org). These programs are
very close to the commercial programs S and Matlab respectively.

As mentioned in the main text, GRETL offers the facility of exporting data in the formats of
both Octave and R. In the case of Octave, the GRETL data set is saved thus: the first variable
listed for export is treated as the dependent variable and is saved as a vector, y, while the
remaining variables are saved jointly as a matrix, X. You can pull the X matrix apart if you
wish, once the data are loaded in Octave. See the Octave manual for details. As for R, the
exported data file preserves any time series structure that is apparent to GRETL. The series
are saved as individual structures. The data should be brought into R using the source()
command.

Of these two programs, R is perhaps more likely to be of immediate interest to econome-
tricians since it offers more in the way of statistical routines (e.g. generalized linear models,
maximum likelihood estimation, time series methods). I have therefore supplied GRETL with a
convenience function for moving data quickly into R. Under GRETL’s Session menu, you will find
the entry “Start GNU R”. This writes out an R version of the current GRETL data set (Rdata.tmp,
in the user’s gretl directory), and sources it into a new R session. A few details on this follow.

First, the data are brought into R by writing a temporary version of .Rprofile in the
current working directory. (If such a file exists it is referenced by R at startup.) In case
you already have a personal .Rprofile in place, the original file is temporarily moved to
.Rprofile.gretltmp, and on exit from gretl it is restored. (If anyone can suggest a cleaner
way of doing this I’d be happy to hear of it.)

Second, the particular way R is invoked depends on the internal gretl variable Rcommand,
whose value may be set under the File, Preferences menu. The default command is RGui.exe
under MS Windows. Under X it is either R --gui=gnome if an installation of the Gnome desk-
top (www.gnome.org) was detected at compile time, or xterm -e R if Gnome was not found.
Please note that (at present) at most three space-separated elements in this command string
will be processed; any extra elements are ignored.

References

Box, G. E. P. and Muller, M. E. (1958) “A Note on the Generation of Random Normal Deviates,”
Annals of Mathematical Statistics, 29, pp. 610–11.

Greene, William H. (2000) Econometric Analysis, 4th edition, Upper Saddle River, NJ: Prentice-
Hall.

MacKinnon, J. G. and White, H. (1985) “Some Heteroskedasticity-Consistent Covariance Matrix
Estimators with Improved Finite Sample Properties,” Journal of Econometrics, 29, pp. 305–25.

R Core Development Team (2000) An Introduction to R, version 1.1.1, http://cran.
r-project.org/doc/manuals/R-intro.pdf.

Ramanathan, Ramu (1998) Introductory Econometrics with Applications, 4th edition, Fort
Worth: Dryden.

Ruud, Paul A. (2000) An Introduction to Classical Econometric Theory, New York and Oxford:
Oxford University Press.

Salkever, D. (1976) “The Use of Dummy Variables to Compute Predictions, Prediction Errors,
and Confidence Intervals,” Journal of Econometrics, 4, pp. 393–7.

57

www.r-project.org
www.octave.org
www.gnome.org
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

	Introduction
	Installing the programs
	Getting started
	Estimation output
	The main window menus
	Command scripts
	The ``session'' concept
	The gretl toolbar
	Data files
	Binary databases
	Missing data values
	Creating a data file from scratch
	Panel data
	Getting more data
	Graphs and plots
	Monte Carlo simulations
	Iterated least squares
	Program options and arguments: gretl
	Program options and arguments: gretlcli
	Path searching
	Tables of estimators and tests
	Command Reference
	Troubleshooting gretl
	The command line interface
	Assessing program accuracy: the NIST datasets
	Appendix A: Crash course in econometrics
	Appendix B: Technical notes
	Appendix C: Advanced econometrics and free software
	References

