
Dibbler – a portable DHCPv6

Developer’s Guide

Tomasz Mrugalski

thomson(at)klub.com.pl

2005-03-16

0.4.0

Contents

1 Intro 1

2 Compilation 2
2.1 Linux . 2
2.2 Windows . 2

2.2.1 Flex/bison under Windows . 3
2.3 DEB and RPM Packages . 4
2.4 Ebuild script for Gentoo . 4
2.5 Dibbler in Linux distributions . 4

3 Documentation 4

4 Basic informations 5
4.1 Option values and filenames . 5
4.2 Memory Manegement using SmartPtr . 5
4.3 Logging . 6
4.4 Names and prefixes . 7

5 Common Architecture 8

6 Client Architecture 8

7 Server Architecture 9

8 Relay Architecture 9

9 Tips 10

1 Intro

Welcome to the Dibbler developer’s guide. This document describes various aspects of the compilation
and installation of Dibbler server and client. Detailed description of the internal architecture is also
provided. People with programming background can find useful informations here. Main purpose of this
document is to help contributors to quickly know Dibbler from the inside.

mailto:thomson(at)klub.com.pl

Dibbler – a portable DHCPv6 Developer’s Guide 2

This document is intenteded just as its title states – a guide. It is not a thorough code description.
To quickly wander around classes and methods used, see documentation generated with the Doxygen tool
(open file doc/html/index.html). More informations about documentation is provided in the following
sections.

2 Compilation

Currently Dibbler supports two platforms: Linux with kernels 2.4 and 2.6 series and Windows (XP
and 2003). Compilation process is system dependent, so it is described for Linux and Windows separately.

2.1 Linux

To compile Dibbler, extract sources, and type:

make client

make server

to build client and server. Although parser files are generated using flex and bison++ and those generated
sources are included, so there is no need to generate them. To generate it if someone wants to generate it
by hand instead of using those supplied versions, here are appropriate commands:

cd ClntCfgMgr

make parser

to generate client parser, and:

cd SrvCfgMgr

make parser

to generate server parser.
There occassionaly might be problem with compilation, when different flex version is installed in the

system. Proper FlexLexer.h is provided in the SrvCfgMgr and ClntCfgMgr directories.

2.2 Windows

To compile Dibbler under Windows, MS Visual Studio 2003 was used. Project files are provided in
the CVS and source archives.

Select project name (server-winxp or client-winxp), click properties, choose ,,Debugging” from ,,Con-
figuration Properties”. Adjust ,,Command arguments” to meet your directory.

If you are using MS Visual Studio 2003, there might be a problem with lowlevel-win32.c file compilation.
Compiler might complain about missing Ipv6IfIndex in IP ADDAPTER ADDRESSES structure. There
is a simple way to bypass this. In Program Files/Microsoft Visual Studio .NET/Vc7/PlatformSDK/Include/

directory, there is IPTypes.h file. It contains structure:

typedef struct _IP_ADAPTER_ADDRESSES {

union {

ULONGLONG Alignment;

struct {

ULONG Length;

DWORD IfIndex;

};

};

struct _IP_ADAPTER_ADDRESSES *Next;

Dibbler – a portable DHCPv6 Developer’s Guide 3

PCHAR AdapterName;

PIP_ADAPTER_UNICAST_ADDRESS FirstUnicastAddress;

PIP_ADAPTER_ANYCAST_ADDRESS FirstAnycastAddress;

PIP_ADAPTER_MULTICAST_ADDRESS FirstMulticastAddress;

PIP_ADAPTER_DNS_SERVER_ADDRESS FirstDnsServerAddress;

PWCHAR DnsSuffix;

PWCHAR Description;

PWCHAR FriendlyName;

BYTE PhysicalAddress[MAX_ADAPTER_ADDRESS_LENGTH];

DWORD PhysicalAddressLength;

DWORD Flags;

DWORD Mtu;

DWORD IfType;

IF_OPER_STATUS OperStatus;

} IP_ADAPTER_ADDRESSES, *PIP_ADAPTER_ADDRESSES;

You should slightly modify it. Just add one additional field: DWORD Ipv6IfIndex;. Now it should
look like this:

typedef struct _IP_ADAPTER_ADDRESSES {

union {

ULONGLONG Alignment;

struct {

ULONG Length;

DWORD IfIndex;

};

};

struct _IP_ADAPTER_ADDRESSES *Next;

PCHAR AdapterName;

PIP_ADAPTER_UNICAST_ADDRESS FirstUnicastAddress;

PIP_ADAPTER_ANYCAST_ADDRESS FirstAnycastAddress;

PIP_ADAPTER_MULTICAST_ADDRESS FirstMulticastAddress;

PIP_ADAPTER_DNS_SERVER_ADDRESS FirstDnsServerAddress;

PWCHAR DnsSuffix;

PWCHAR Description;

PWCHAR FriendlyName;

BYTE PhysicalAddress[MAX_ADAPTER_ADDRESS_LENGTH];

DWORD PhysicalAddressLength;

DWORD Flags;

DWORD Mtu;

DWORD IfType;

IF_OPER_STATUS OperStatus;

DWORD Ipv6IfIndex;

} IP_ADAPTER_ADDRESSES, *PIP_ADAPTER_ADDRESSES;

2.2.1 Flex/bison under Windows

As was mentioned before, flex and bison++ tools are not required to successfully build Dibbler. They
are only required, if changes are made to the parsers. Lexer and Parser files (ClntLexer.*, ClntParser.*,
SrvLexer.* and SrvParser.*) are generated by author and placed in CVS and archives. There is no
need to generate them. However, if you insist on doing so, there is an flex and bison binary included in
port-winxp. Take note that several modifications are required:

Dibbler – a portable DHCPv6 Developer’s Guide 4

• To generate ClntParser.cpp and ClntLexer.cppfiles, you can use parser.bat. After generation, in
file ClntLexer.cpp replace: class istream;with: #include <iostream> and using namespace std;

lines.

• flex binary included is slightly modified. It generates

#include "FlexLexer.h"

instead of

#include <FlexLexer.h>

You should add . to include path if you have problem with missing FlexLexer.h. Also note that
FlexLexer.h is modified (std:: added in several places, <fstream.h> is replaced with <fstream>

etc.)

Keep in mind that author is in no way a flex/bison guru and found this method in a painful trial-and-
error way.

2.3 DEB and RPM Packages

There is a possibility to generate RPM (RadHat, Fedora Core, Mandrake, PLD and lots of other
distributions) and DEB (Debian, Knoppix and other) packages. Before trying this trick, make sure that
you have required tools (rpmbuild for RPM;dpkg-deb for DEB packages). Note that this requires root
privileges. Package generation is done by the following commands:

make release-deb

make release-rpm

2.4 Ebuild script for Gentoo

There is also ebuild script prepared for Gentoo users. It is located in the Port-linux/gentoo directory.

2.5 Dibbler in Linux distributions

Dibbler is available in PLD GNU/Linux distributions. Author also performs necessary steps to include
Dibbler in Gentoo and Debian GNU/Linux distributions.

3 Documentation

There are three parts of the documentation: User’s Guide, Developer’s Guide and a Code documenta-
tion. Both guides are written in LATEX(*.tex files). To generate PDF files, you need to have LATEXinstalled.
To generate Code documentation, a tool called Doxygen is required. All documentation is of course avail-
able at Dibbler’s homepage.

To generate all documentation type (in Dibbler source directory):

make doc oxygen

In this section various common aspects of the Dibbler internal workings are decribed.

http://www.pld-linux.org
http://www.gentoo.org
http://www.debian.org
http://www.doxygen.org
http://klub.com.pl/dhcpv6

Dibbler – a portable DHCPv6 Developer’s Guide 5

4 Basic informations

This section describes various aspects of Dibbler compilation, usage and internal design.

4.1 Option values and filenames

DHCPv6 is a relatively new protocol and additional options are in a specification phase. It means that
until standarisation process is over, they do not have any officially assigned numbers. Once standarization
process is over (and RFC document is released), this option gets an official number.

There’s pretty good chance that different implementors may choose diffrent values for those not-yet
officialy accepted options. To change those values in Dibbler, you have to modify file misc/DHCPConst.h
and recompile server or client. Make sure that you build everything for scratch. Use make clean in Linux
and Clean up solution in Windows before you start building a new version.

In default build, Dibbler stores all information in the /var/lib/dibbler directory (Linux) or in
the working directory (Windows). There are multiple files stored in those directories. However, some-
times there is a need to build Dibbler which uses different directory or filename. To do so, simply edit
misc/Portable.h file and rebuild everything.

4.2 Memory Manegement using SmartPtr

To effectively fight memory leaks, clever mechanism was introduced. Smart pointers are used to point
to all dynamic structures, e.g. messages, options or client informations in server database. Smart pointer
will free object by itself, when object is no longer needed. When this is happening? When last smart
pointer stops pointing at the object. There is a tradeoff: normal pointers (*) should not be mixed with
smart pointers.

Smart pointers are implemented as C++ class templates. Template is called SmartPtr<TYPE>.
To quickly explain smart pointers usage, here’s short code example:

1 void foo() {

2 SmartPtr<TIPv6Addr> addr = new TIPv6Addr("ff02::1:2");

3 SmartPtr<TIPv6Addr> tmp;

4 if (!tmp) cout << "Null pointer" << endl;

5 tmp = addr;

6 std::cout << addr->getPlain();

7 }

What’s happened in those lines?

1 – Function starts.

2 – New TIPv6Addr object is created. Smart Pointer (SmartPtr<TIPv6Addr>) is also created to point
at this object. Using normal pointer to achive the same goal would look like this:
TIPv6Addr * addr = new TIPv6Addr("ff02::1:2");

3 – Another pointer is created. It is equivalent of the classical pointer (TIPv6Addr * tmp).

4 – Simple check if pointer does not point to anything.

5 – Smart pointers can be coppied in a easy way.

6 – Using object pointed by smart pointer is simple

7 – Here magic begins. addr and tmp are local variables, so they are destroyed here. But they are the
only smart pointers which access TIPv6Addr object. So they are destroy that object.

Dibbler – a portable DHCPv6 Developer’s Guide 6

In conclusion, object remain in memory as long as there is at least one smart pointer which points to
this object. SmartPointers can be easily derefernced. Just add * before them:

cout << *addr << endl;

SmartPtrs are often used to store various objects in a list. Cool part of this solution is that you can
hold objects of various derived classes on one list in a very comfortable manner. There is an additional
template defined to create and manipulate such lists. It is called TContainer. There’s also useful macro
defined to use this without typing too much. Here are two examples how to define list of addresses (both
mean exactly the same):

TContainer< SmartPtr<TIPvAddr> > addrLst;

List(TIPv6Addr) addrLst;

How to use this list? Oh well, another example:

1 List(TIPv6Addr) addrLst;

2 SmartPtr<TIPv6Addr> ptr = ...;

3 SmartPtr<TIPv6Addr> tmp;

4 addrLst.clear();

5 addrLst.append(ptr);

6 addrLst.first();

7 tmp = addrLst.get();

8 cout << "List contains " << addrLst.count() << " elements" << endl;

9 addrLst.first();

10 while (tmp = addrLst.get())

11 cout << *tmp << endl;

And here is description what that code does:

1 – Address list declaration.

2,3 – SmartPtrs declarations. Just to show variable types.

4 – List can be cleared. All pointers will be destroyed. If they were only pointers to point to some objects,
those objects will be destroyed, too.

5 – Append object pointed by ptr to the list.

6 – Rewind list to the beginning.

7 – Get next object from the list. If list is empty or last element was already got, NULL is returned.

8 – An easy way to count elements on the list.

9 – Rewind list to the beginning.

10,11 – A cute example how to print all addresses on the list.

4.3 Logging

To log various informations, Log(LOGLEVEL) macros are defined. There are eight levels of logging:

Emergency – Used to report system wide emergency. Such conditions could not occur in the DHCPv6
client o server, so this logging level should not be used. Called with Log(Emerg) << "..." << LogEnd.

Dibbler – a portable DHCPv6 Developer’s Guide 7

Alert – Used to alert an administrator about system wide alerts. This logging level should not be used
in DHCPv6. Called with Log(Alert) << "..." << LogEnd.

Critical – Used in situations critical to the application, e.g. application shutdown. Fatal errors should
be logged on this level. Called with Log(Crit) << "..." << LogEnd.

Error – Used to report error situations. For example, problems with binding sockets. Called with
Log(Error) << "..." << LogEnd.

Warning – Used to report RFC violations, e.g. missing required options, invalid parameters and so on.
Called with Log(Warning) << "..." << LogEnd.

Notice – Used to report normal operations, e.g. address assignement or informations about received
options. Called with Log(Notice) << "..." << LogEnd.

Info – Used to report detailed information. DHCPv6 protocol knowledge might be needed to understand
those messages. Called with Log(Info) << "..." << LogEnd.

Debug – Used to report internal informations. Knowledge about Dibbler source code might be needed
to understand those messages. Called with Log(Debug) << "..." << LogEnd.

4.4 Names and prefixes

To avoid confussion, various prefixes are used in class and variable names. Class types begin with T
(e.g. address class would be named TAddr), enumeration types begin with E (e.g. state enumaterion
would be names EState). Dibbler is divided into 4 large functional blocks called managers1: address
maganger, interface manager, Configuration manager, and transmsission manager. Each of them uses
different prefix: Addr, Iface, Cfg or Trans. There are also objects shared among them: messages (Msg
prefix) and options (Opt prefix). Often there are two derived versions: related to client (Clnt prefix) or
related to server (Clnt). Rel prefix is used to denote Relay related classes. Here are examples of some
class names:

TAddrMgr – Address manager, common version.

TClntAddrMgr – Address manager, client version.

TAddrIface – Interface representation, used in address manager.

TAddrAddr – Address representation used in address manager.

TSrvIfaceMgr – Interface manager, server version.

TClntIfaceIface – Interface representation used in client interface manager.

TClntMsg – Message represented on the client side.

TClntOptPreference – Prefernce option used on the client side.

TIfaceSocket – Socket used in the interface manager.

TClntCfgAddr – Address used in the client config manager.

Also note that class function names start with small letters (e.g. bool TOpt::isValid();) and class
variables start with capital letters (e.g. bool TOpt::IsValid;).

1They are described in the following sections of this document

Dibbler – a portable DHCPv6 Developer’s Guide 8

5 Common Architecture

General architecture is common between server and client. In both cases, all classes are divided into
several major groups:

IfaceMgr – Interface Manager. It represents all network interfaces present in the system. They’re represented
by TIfaceIface objects and stored in IfaceLst. Each interface has list of open sockets, represented with
TIfaceSocket objects. There are also a number of auxiliary functions for getting proper interface.
IfaceIface objects also provide methods to add, update and remove addresses.

AddrMgr – Address Manager. It is an address database, which stores all informations about clients, IAs and
associated addresses.

CfgMgr – Config Manager. It is being used to read configuration information from config file and provide
those informations while runtime. Common mechanisms shared between server and client are scarce,
so this base class is almost empty.

TransMgr – Transmission Manager, sometimes called Transaction Manager. It is responsible for network
interaction and core DHCPv6 logic. It sends various messages when such need arise, matches received
responses with sent messages, retransmits messages etc. It contains list of messages currently being
trasmitted.

Messages – There is one parent class of all messages. It contains several basic functionalites common to all
messages.

Options – There are multiple option classes. Note that some classes are designed to represent one specific
option (e.g. OptIAAddress) and other are not (e.g. OptAddrLst can contain address list, so it can
be used as DNS Resolvers, SIP servers o NIS servers option).

Misc – This cathegory (or rather directory) contains various miscellanous classes and functions.

None of those classes is used directly. Client, server and relay uses derived classes.
They are all created within DHCPClient or DHCPServer objects in client or server, respectively.

DHCPRelay object will perform similar function for relays.

6 Client Architecture

Client is represented by a DHCPClient object. It contains 4 large managers, each with its own
functions. Also messages and options are defined:

TClntIfaceMgr – contains client version of the IfaceMgr. Major difference is a TClntIfaceIface class, an enhanced
version of the IfaceIface. It provides methods to set up various options on the physical interface.
Those methods are used by Options representing options.

TClntAddrMgr – Client version supports additional, client related functions, e.g. tentative timeout used in DAD
procedure. It also simplifies database handling as there will always be only one client in the database.

TClntCfgMgr – Client related parser. TClntCfgMgr and related objects are designed to provide easy access to
parameters specified in the configuration file. ClntCfgIface is a very important class as most of the
parameters is interface-specific.

TClntTransMgr – Core logic of the Client. It uses all other managers to decide what actions should be taken at
occuring circumstances, e.g. send REQUEST when there are less addresses assigned than specified
in the configuration file.

Dibbler – a portable DHCPv6 Developer’s Guide 9

TClntMsg – All messages have client specific classes. Those objects are created as new messages are being
sent. After server message reception, object is also created and passed to the original message. For
example, client sends SOLICIT message and server send ADVERTISE message. Reply will
be passed by invoking answer(msgAdvertise) method on the msgSolicit object.

TClntOpt – There are client specific options defined. Each of those options has doDuties() method which
is called if this option was received in a proper reply message from the server. It calls appropriate
methods in TClntIfagrMgr which set specific options in the system.

7 Server Architecture

Server is represented by a DHCPServer object. It contains 4 large managers, each with its own
functions. Also SrvMessages and SrvOptions are defined:

TSrvIfaceMgr – contains server version of the IfaceMgr. There are almost no modificiation compared to common
version.

TSrvAddrMgr – Client version supports additional, client related functions, e.g. tentative timeout used in DAD
procedure. It also simplifies database handling as there will always be only one client in the database.

TSrvCfgMgr – Client related parser. TSrvCfgMgr and related objects are designed to provide easy access to
parameters specified in the configuration file. SrvCfgIface is a very important class as most of the
parameters is interface-specific.

TSrvTransMgr – Core logic of the client. It uses all other managers to decide what actions should be taken at
occuring circumstances, e.g. send REQUEST when there are less addresses assigned than specified
in the configuration file.

TSrvMsg – Server version of the messages. Each time server receives a message, TSrvMsg is created. De-
pending of its type, TSrvAdvertise of TSrvReply message is created. As parameter to its contructor
original message is passed. After creating message, it is sent back to the client and stored for possible
retransmission purposes.

TSrvOpt – Server version of the Option representing objects. They are just used to store data, so they are
considerably simpler than client versions.

8 Relay Architecture

Preliminary relay version was available in the 0.4.0 release. It consists of serveral simple blocks:

TRelIfaceMgr – contains relayr version of the IfaceMgr. There are almost no modificiation compared to common
version, execept decodeMsg() and decodeRelayRepl() methods.

TRelCfgMgr – Relay related parser. TRelCfgMgr and related objects are designed to provide easy access to
parameters specified in the configuration file. RelCfgIface is a very important class as most of the
parameters is interface-specific.

TRelTransMgr – It’s plain simple manager. It’s only function is to relay received message on all interfaces.

TRelMsg – From the relay’s point of view, all messages fall to one of 3 categories: Generic (i.e. not encap-
sulated) messages, RelayForw (already forwarded by some other relay) and RelayRepl (replies from
server). Most of the messages is threated as generic message.

Dibbler – a portable DHCPv6 Developer’s Guide 10

TRelOpt – Similar approach is used to handle options. Expect RELAY MSG option (which contains relayed
message) and interface-id option (which contains identifier of the interface), all options are threated
as generic options, which are handled transparently.

9 Tips

• Linux: Running client and server on the same host requires client recompilation with specific option
enabled. Please edit misc/Portable.h and set CLIENT_BIND_REUSE to true\. This will allow to
receive data from local server, but will also disable checking if there is another client running. So
you can run multiple clients, which is a straight road to trouble. You were warned.

• Ethereal, a widely used network sniffer/analyzer has a bug with parsing DHCPv6 message: SIP
options are always reported as malformed. Also NIS/NIS+ options have improper values (not
comformant to RFC3898). To work around that problem, download packet-dhcpv6.c from Dibbler
homepage and recompile Ethereal. Dibbler’s author sent patches to the Ethereal team. Those
changes should be included in the next Ethereal release.

• If you are reading this Developer’s Guide, then Hey! You’re probably a developer! If you found any
bugs (or think you found one), go to the http://klub.com.pl/bugzilla and report it. If you report
was a mistake – oh well, you just lost 5 minutes. But if it was really a bug, you have just improved
next Dibbler version.

• If you have any questions about Dibbler or DHCPv6, feel free to mail me.

http://klub.com.pl/bugzilla

	Intro
	Compilation
	Linux
	Windows
	Flex/bison under Windows

	DEB and RPM Packages
	Ebuild script for Gentoo
	Dibbler in Linux distributions

	Documentation
	Basic informations
	Option values and filenames
	Memory Manegement using SmartPtr
	Logging
	Names and prefixes

	Common Architecture
	Client Architecture
	Server Architecture
	Relay Architecture
	Tips

