
Dibbler – a portable DHCPv6

User’s guide

Tomasz Mrugalski

thomson(at)klub.com.pl

2005-03-16

0.4.0

mailto:thomson(at)klub.com.pl

Dibbler – a portable DHCPv6 User’s Guide 2

Contents

1 Intro 3

2 Overview 3

3 Requirements 4

4 Installation and usage 5

4.1 Linux installation . 5
4.2 Windows installation . 6

5 Compilation 6

5.1 Linux compilation . 6
5.2 WindowsXP/2003 compilation . 6

6 Configuration files 7

6.1 Tokens and basic informations . 7
6.2 Scopes . 7
6.3 Comments . 7
6.4 Client configuration file . 8

6.4.1 Global scope . 8
6.4.2 Interface declaration . 8
6.4.3 IA declaration . 8
6.4.4 Address declaration . 9
6.4.5 Standard options . 9
6.4.6 Addional options . 10
6.4.7 Stateless configuration . 11
6.4.8 Client configuration file examples . 11

6.5 Server configuration file . 13
6.5.1 Global scope . 13
6.5.2 Interface declaration . 13
6.5.3 Class scope . 13
6.5.4 Options . 14
6.5.5 Addional options . 14
6.5.6 Server configuration file examples . 15

6.6 Relay configuration file . 17
6.6.1 Global scope . 17
6.6.2 Interface declaration . 17
6.6.3 Options . 18
6.6.4 Relay configuration file examples . 18

7 Frequently Asked Question 19

7.1 Common . 19
7.2 Linux specific . 20
7.3 Windows specific . 20

8 History 21

9 Contact 21

10 Thanks and greetings 21

Dibbler – a portable DHCPv6 User’s Guide 3

1 Intro

First of all, as an author I would like to thank you for your interest in this DHCPv6 implemen-
tation. If this documentation doesn’t answer your question or you have any suggestions, feel free to
contact me. See Contact section for details. Also be sure to check out Dibbler website located at
http://klub.com.pl/dhcpv6/.

2 Overview

Dibbler is a portable DHCPv6 solution. It features server, client and relay. Currently there are ports
available for Windows XP and 2003 and Linux systems. It supports both stateful (i.e. IPv6 address
granting) and stateless (i.e. options granting) autoconfiguration. Besides basic functionality1, it also
offers serveral enhancements, e.g. DNS servers and doman names configuration.

Dibbler is an open source software, distributed under GNU GPL licence. It means that it is freely
available, free of charge and can be used by anyone (including commercial users). Sources are also
available, so anyone skilled enough can fix bugs or add new features.

As for now, Dibbler offers these features:

• Basic server discovery and address assignment (SOLICIT, ADVERTISE, REQUEST and REPLY
messages) – simplest case possible: client discovers server, then asks for an address, which is granted
by a server.

• Best server discovery – when client receives more than one ADVERTISE messages from different
servers, it chooses the best one and remembers remaining ones as a backup.

• Many servers support – client is capable of discovering and dealing with multiple servers. For
example, client would like to have 5 addresses configured. Prefered server can only grant 3, so client
send request for remaining 2 addresses to one of the remaining servers.

• Relay support – Dibbler server supports indirect communication with clients via relays. Relay
implementation is also available. Clients can talk to the server directly or via relays.

• Unicast communication – if specific conditions are met, client could send messages directly to a
server’s unicast address, so additional servers does not need to process those messages. It also
improves effciency, as all nodes present in LAN segment receive multicast packets.2

• Address renewal (RENEW,REBIND and REPLY messages) – client renews addresses at certain
time intervals, if server specified so.

• Duplicate address detection (DECLINE and REPLY messages) – client can detect and properly
handle faulty situation, when server grants address which is illegaly used by some other host. It will
inform server of such circumstances, and request for another address. Server will mark this address
as used by unknown host, and will assign another address to a client.

• Power failure/crash support (CONFIRM and REPLY messages) – after client recovers from crash or
power failure, it still can have assigned valid addresses. In such circumstances, client uses CONFIRM
message, to config if those addresses are still valid3.

• IA Option – this option is used to carry addresses. Both server and client support multiple IAs in
one message. Additional feature is client capability to ask for a specific address.

1specified in RFC3315
2Nodes, which do not belong to specific multicast group, drop those packets silently. However, determining if host belongs

or not to a group must be performed on each node.
3As for 0.4.0 version, this functionality works on server side only, client side support will be available in future releases.

http://klub.com.pl/dhcpv6/

Dibbler – a portable DHCPv6 User’s Guide 4

• Rapid Commit Option (SOLICIT and REPLY messages) – if both client and server are configured to
use rapid commit, address assignment procedure can be shortened to 2 messages. Major advantage
is lesser network usage and quicker client startup time.

Except RFC3315-specified behavior, Dibbler also support several enhancements:

• DNS Servers Option – client can ask for information about DNS servers.

• Domain Name Option – client can ask for information about domain name it is connected in.

• Time Zone Option – client can ask for information about time zone it is currently in.

• NTP Servers Option – client can ask for Network Time Protocol Servers to synchronize its clock.

• SIP Servers Option – SIP servers IPv6 address information can be passed to clients.

• SIP domain name - SIP domain name can be passed to clients.

• NIS, NIS+ server Option – Both NIS and NIS+ server adresses can be passed to clients.

• NIS, NIS+ domain name Option – NIS or NIS+ domain names can be passed to clients.

• Option renewal mechanism (Lifetime Option) – options obtained from server can be updated peri-
odically.

And now some implementation specific details:

• Server, client and relay, after each action dumps state to disk in a XML format, so it can be easily
processed in an automated manner. Simple example of this advantage is a script, which can generate
reports about server usage (assigned addresses, clients configured and so on);

• Dibbler is fully portable. Core logic is system independent and coded in C++ language. There
are also several low-level functions, which are system speficic. They’re used for adding addresses,
retriving information about interfaces, setting DNS servers and so on. Porting Dibbler to other
systems (and even other architectures) would require implementic only those serveral system-specific
functions.

• Although Dibbler was developed on the i386 architecture, there are ports available for other archi-
tectures: AMD64, PowerPC, Sparc and Alpha. They are available in the PLD Linux Disctribution
2.0 in test section. You can download them from ftp://ftp.pld-linux.org/dists/2.0/test/.
Keep in mind author has not tested those ports, so there might be some unknown issues present.

See RELEASE-NOTES for details about version-specific upgrades, fixes and features.

3 Requirements

Dibbler can be run on Linux systems with kernels from 2.4 and 2.6 series. Obviously, IPv6 (compiled
into kernel or as module) support is required to run. As DHCPv6 uses UDP ports below 1024, root
privileges are required.

Dibbler also runs on Windows XP and 2003. In XP systems, at least Service Pack 1 is required.
To install various Dibbler parts (server, client or relay) as services, administrator privileges might be
required.

ftp://ftp.pld-linux.org/dists/2.0/test/

Dibbler – a portable DHCPv6 User’s Guide 5

4 Installation and usage

Client, server and relay are installed in the same way. Installation method is different in WindowsXP
and Linux systems, so they’re described separately. To simplify installation, it assumes that binary
versions are used4.

4.1 Linux installation

Starting with 0.4.0, there will are 3 different packages: client, server and relay. For some architectures
there will be also documentation package provided. During writing this documentation, Dibbler is already
present in the PLD Linux Distribution 2.0 in the test section. There are efforts under way to include
Dibbler in Debian GNU/Linux distribution as well as in Gentoo GNU/Linux distribution.

Obtain (e.g. download from http://klub.com.pl/dhcpv6/) an archive, which suits your needs.
Currently there are provided RPM packages (which can be used in RedHat, Fedora Core, Mandrake
or PLD distribution), DEB packages (suitable for Debian or Knoppix) and ebuild (for Gentoo users).
To install rpm package, run rpm − iarchive.rpm command. For example, to install dibbler 0.4.0, issue
following command:

rpm -i dibbler-0.4.0-1.i386.rpm

To install Dibbler on Debian or other system with dpkg management system, run dpkg− iarchive.deb

command. For example, to install server, issue following command:

dpkg -i dibbler-server_0.4.0-1_i386.rpm

To install Dibbler in Gentoo systems, download ebuild script and issue command:

emerge dibbler-0.3.1.ebuild

If you would like to install Dibbler from sources, download tar.gz source archive, extract it, type make
followed by target (e.g. server, client or relay5). After successful compilation type make install. For
example, to build server and relay, type:

tar zxvf dibbler-0.4.0-src.tar.gz

make server relay

make install

Depending what functionality do you want to use (server,client or relay), you should edit config file
(client.conf for client, server.conf for server and relay.conf for relay). All config files should be
placed in the /etc/dibbler directory. After editing, issue one of the following commands:

dibbler-server start

dibbler-client start

dibbler-relay start

start parameter needs a little comment. It instructs Dibbler to run in daemon mode – detach from
console and run in the background. During config files fine-tuning, it is ofter better to watch Dibbler’s
bahavior instantly. In this case, use run instead of start parameter. Dibbler will present its messages
on your console. To finish it, press ctrl-c.

To stop server, client or relay running in daemon mode, type:

4Compilation is not required, binary version can be used safely. Compilation should be performed by advanced users only,
see Compilation section for details.

5To get full target list, type: makehelp

http://klub.com.pl/dhcpv6/

Dibbler – a portable DHCPv6 User’s Guide 6

dibbler-server stop

dibbler-client stop

dibbler-relay stop

To see, if client, server or relay are running6, type:

dibbler-server status

dibbler-client status

dibbler-relay status

4.2 Windows installation

Starting at 0.2.1, Dibbler supports Windows XP and 2003. The easiest way it to download clickable
windows installer. Download it from http://klub.com.pl/dhcpv6/). After downloading, click on it and
follow on screen instructions. Dibbler will be installed and all required links will be placed in the Start
menu.

5 Compilation

Dibbler is distributed in 2 versions: binary and source files. For most users, binary version is better
choice. Compilation is performed by more experienced users, preferably with programming knowledge.
It does not offer any advances over binary version, only allows to understand internal Dibbler workings.
You probably want just install and use Dibbler. If that is your case, read section named Installation.

5.1 Linux compilation

Compilation in most cases is not necessary and should be performed only by experienced users.
Perferred method is to use binaries provided on Dibbler’s website. Issue following commands:

tar zxvf dibbler-0.4.0-src.tar.gz

cd dibbler

make server client relay doc

That’s it. You can also install it in the system by issuing command:

make install

If there are problems with missing/different compiler version, take a look at the beginning of the
Makefile.inc file. Dibbler was compiled using gcc 2.95, 3.0, 3.2, 3.3 and 3.4 versions. Lexer files were
generated using flex 2.5.31. Parser file were created using bison++ 1.21.97. Everything was developed
under Debian GNU/Linux system.

If there are problems with SrvLexer.cpp and ClntLexer.cpp files, please use FlexLexer.h in Port-
linux/ directory. Most simple way to do this is to copy this file to /usr/include directory. Additional
information about compilation can be found in Dibbler Developer’s Guide.

5.2 WindowsXP/2003 compilation

Download dibbler-0.3.0-src.tar.gz and extract it. In Port-winxp there will be project files (for server,
client and relay) for MS Visual C++ 2003. Open one of them and click Build command. That should do
the trick. Additional information about compilation can be found in Dibbler Developer’s Guide.

6Running status is based on /var/lib/dibbler/*.pid files. In rare occasions, when server crashes, this status will show
server status as running.

7flex and bison++ tools are not required to compile Dibbler. Generated files are placed in CVS and in tar.gz archives

http://klub.com.pl/dhcpv6/

Dibbler – a portable DHCPv6 User’s Guide 7

6 Configuration files

This section describes Dibbler server and (optional) client configuration. Square brackets denotes
optional values: mandatory [optional]. Alternative is marked as |. A | B means A or B.

Parsers are case-insensitive, so Iface, IfAcE, iface and IFACE mean the same. This does not apply to
interface names, of course. eth0 and ETH0 are dwo diffrent interfaces.

6.1 Tokens and basic informations

Config file parsing is token-based. Here’s list of tokens used:

IPv6 address – IPv6 address

32-bit decimal integer – string containing only numbers, e.g. 123456

string – string of arbitrary characters enclosed in single or double quotes, e.g. ’this is string’. If string
contains only a-z, A-Z and 0-9 characters, quotes can be omited.

DUID identifier – hex number starting with 0x, e.g. 0x12abcd.

IPv6 address list – IPv6 addresses separated with commas.

DUID list – DUIDs separated with commas.

string list – strings separated with comas.

Boolean – YES, NO, TRUE, FALSE, 0 or 1. Each of them can be used, when user must enable or
disable specific option.

6.2 Scopes

There are four scopes, in which options can be specified: global, inteface, IA and address.
Global scope is the largest. It covers the whole config file and applies to all intefaces, IAs, and

addresses, until some lower scope options override it. Next comes inteface scope. Options defined there
are inteface-specific and apply to this interface, all IAs in this interface and addresses in those IAs. Next
is IA scope. Options defined there are IA-specific and apply to this IA and to addresses it contains. Least
significant scope is address. Every option is specific for one scope. For example, T1 is defined for IA
scope. However, it can be also used in more common scopes. In this case – in interface or global. Defining
T1 in interface scope means: ,,for this interface default value for T1 is ...”. The same applies to global
scope. Options can be used multiple times. In that case value defined later is used.

6.3 Comments

Comments are also allowed. All common comment styles are supported:

• C++ style one-line comments: // this is comment

• C style multi-line comments: /* this is multiline comment */

• bash style one-line comments: # this is one-line comment

Dibbler – a portable DHCPv6 User’s Guide 8

6.4 Client configuration file

Client config file should be named client.conf. After successful startup, old version of this file
is stored as client.conf-old. One of design requirements for client was ,,out of the box” usage. To
achieve this, simply use empty client.conf file. Client will try to get one address for each up and
running interface 8.

6.4.1 Global scope

Every option can be declared in global scope. Config file has this form:

interface declaration

global options

interface options

IA options

address options

6.4.2 Interface declaration

Interface can be declared this way:

iface name_of_this_interface

{

interface options

IA options

address options

}

or

iface number

{

interface options

IA options

address options

}

In every case, number denotes interface number. It can be extracted from ,,ip l” (Linux) or ,,ipv6 if”(Windows).
name_of_this_interface is an interface name. Also take a note that name of the interface no longer
needs to be enclosed in single or double quotes. It is necessary only in Windows systems, where interface
names sometimes contain spaces, e.g. ”local network connection”.

6.4.3 IA declaration

IA is a short for Identity Association. It is a logical entity representing address or addresses used to
perform some functions. Almost always, each DHCPv6 client will have exactly one IA. IA is declared this
way:

8Exactly: Client tries to configure each up, multicast-capable and running interface, which has link address at least 6
bytes long. So it will not configure tunnels (which usually have IPv4 address (4bytes long) as their link address. It should
configure all Ethernet and 802.11 interfaces. The latter was not tested by author due to lack of access to 802.11 equipment.

Dibbler – a portable DHCPv6 User’s Guide 9

ia number

{

address declaration

IA options

address options

}

where number is an optional number, which describes how many such IAs should be requested. Number
is optional. If it is not specified, 1 is used. If this number is not equal 1, then address options are not
allowed. That could come in handy when someone need serveral IAs with the same parameters. If IA
contains no addresses, client assumes that one address should be configured.

6.4.4 Address declaration

Addres is declared like this:

address number

{

address options

IPv6 address

}

where number denotes how many addresses with those values should be requested. If it is diffrent than
1, then IPv6 address options are not allowed.

6.4.5 Standard options

Standard options are... well, standard. This means that they have nothing to do with any extensions.
Standard options are declared this way:

OptionName option-value

Every option has a scope it can be used in, default value and sometimes allowed range. Parameters
denoted with (H) are used as hints for the server. Value of work-dir option is currently not used.
In log-mode option, short and full values are supported. syslog and eventlog will be available in
future releases. rapid-commit and unicast expect one boolean parameter. It can be TRUE, FALSE, YES,
NO, 0 or 1. Setting log level to too low value (5 or less) can result in mysterious behavior. 6 or 7 is a
recommended value.

Dibbler – a portable DHCPv6 User’s Guide 10

Name Scope Values default Description
(default)

valid-lifetime address integer 4294967296 valid lifetime for address (specified
in seconds) (H)

prefered-lifetime address integer 4294967296 after this amount of time(in sec-
onds) address becomes depreciated
(H)

T1 IA integer 4294967296 client should renew addresses after
T1 seconds (H)

T2 IA integer 4294967296 client should send REBIND after T2
seconds (H)

reject-servers IA addrs or
DUID list

empty list containing servers which should
be discarded in configuration of this
IA

prefered-servers IA addrs or
DUID list

empty Prefered servers list. ADVER-
TISE messages received by client
are sorted according to this list.

rapid-commit interface 0 or 1 0 should we use Rapid Commit?
unicast interface 0 or 1 0 Is unicast communication allowed?
work-dir global string empty working directory
log-level global 1-8 8 log-level (8 is most verbose)
log-name global string Client Name, which appears in a log file
log-mode global short or

full
full logging mode: short (date and name

suppressed) or full.

6.4.6 Addional options

Additional options are the options specified in external drafts and in RFC documents. They are
declared with option keyword:

option OptionName option-value

where OptionName is one of possible values listed below:

OptionName Scope Values default Description
(default)

dns-server interface addrs list not defined preferred DNS servers list (H)
domain interface domains

list
not defined preferred domain (H)

ntp-server interface addrs list not defined preferred NTP servers list (H)
time-zone interface timezone not defined preferred time zone (H)
sip-server interface addrs list not defined preferred SIP servers list (H)
sip-domain interface domains

list
not defined preferred SIP domain (H)

nis-server interface addrs list not defined preferred NIS servers list (H)
nis-domain interface domain not defined preferred NIS domain (H)
nis+-server interface addrs list not defined preferred NIS+ servers list (H)
nis+-domain interface domain not defined preferred NIS+ domain (H)

lifetime interface YES/NO no Should client request lifetime op-
tion?

Dibbler – a portable DHCPv6 User’s Guide 11

Note that timezone format is described in file draft-ietf-dhc-dhcpv6-opt-tz-00.txt and domain
format is described in RFC 3646. After receiving options values from a server, client stores them in
separate files in the working directory, e.g. option-dns-server. Several options are processed and set up
in the system. Options supported in Linux and Windows environments are presented in the table below.

Option Support (Linux) Support (winXP/2003)

dns-server system, file system, file
domain file system, file
ntp-server file file
time-zone file file
sip-server file file
sip-domain file file
nis-server file file
nis-domain file file
nis+-server file file
nis+-domain file file

6.4.7 Stateless configuration

If interface does not contain IA keyword, one IA with one address is assumed. If client should not
request for address on this interface, stateless 9 must be used. In such circumstances, only specified
options will be requested.

6.4.8 Client configuration file examples

In simplest case, client config can be empty. Client will try to assign one address for every interface
present in the system, except interfaces:

• which are down (flag UP not set)

• loopback (flag LOOPBACK set)

• which are not running (flag RUNNING not set)

• which are not multicast capable (flag MULTICAST not set)

If you must use DHCPv6 on one of such interfaces (which is not recommended and probably will fail),
you must explicitly specify this interface in config file.

Simple config config file requesting 1 address and DNS configuration on eth0 interface looks like that:

log-mode short

log-level 7

iface eth0 {

option dns-server

ia {

}

}

Another example is presented below. Client asks for 1 address and would like it to be 2000::1:2:3.
Rapid-commit is allowed and client would like to renew this address once in a 10 minutes:

9In the version 0.2.1-RC1 and earlier, this directive was called no-ia. This depreciated name is valid for now, but might
be removed in future releases.

Dibbler – a portable DHCPv6 User’s Guide 12

log-mode short

log-level 7

iface eth0 {

rapid-commit YES

ia {

address {

2000::1:2:3

}

}

}

Here’s yet another example. We would like to obtain 2 addresses on ,,Local Area Connection” interface.
Unicast communication is ok in this scenario. We don’t care for details, so keep those log very short.
Config file looks like that:

log-mode short

log-level 3

iface "Local Area Connection" {

ia {

address

address

}

}

Here is a more coplicated case. Let’s say there are 4 interfaces, numbered 1 thru 4. Interfaces 1,2 and
3 are not to be configured. Interface 4, named eth0 should have 3 IAs. Two of them are supposed to
contain one address each. Third IA should contain 3 addresses. Addresses assigned to first and second IA
should have prefered-lifetime 1 hour and valid-lifetime 2 hours. This IA should have 3 specific addresses:
2000::1, 2000::2 and 2000::3. Information about NTP servers,our current timezone, available DNS servers
and our domain should also be retrived. Here’s config file:

iface eth0

{

valid-lifetime 7200 // default value - 2 hours

prefered-lifetime 3600 // default value - 1 hour

T1 600 // request 10 minutes interval

T2 1200 /* trouble begins after 20 minutes

of server’s silence */

IA 2 // 2 IAs with just specified values (1h/2h/10min/20min)

IA // third IA is more specific

{

valid-lifetime 3600 // valid lifetime changed to 1 hour

prefered-lifetime 1800 // prefered lifetime changed to 30min

address

{

2000::1 // request those addresses

2000::2

2000::3

}

}

option ntp-server // ask for NTP servers

Dibbler – a portable DHCPv6 User’s Guide 13

option time-zone // ask for timezone

option dns-server // ask for DNS servers

option domain // ask for domain

}

6.5 Server configuration file

Server configuration is stored in server.conf file. After successful startup, old version of this file is
stored as server.conf-old.

6.5.1 Global scope

Every option can be declared in global scope. Config file has this form:

interface declaration |

global options |

interface options |

class options

6.5.2 Interface declaration

Interface can be declared this way:

iface name_of_this_interface

{

interface options |

class options

}

or

iface number

{

interface options |

class options

}

where name of this interface denotes name of the interface and number denotes it’s number. It no
longer needs to be enclosed in single or double quotes (except windows cases, when interface name contains
spaces).

6.5.3 Class scope

Address class is declared as follows:

class

{

class options |

address poll

}

address poll has this format:

poll minaddress-maxaddress

Dibbler – a portable DHCPv6 User’s Guide 14

6.5.4 Options

Every option has a scope it can be used in, default value and sometimes allowed range.
Name Scope Values default Description

(default)

work-dir global string empty working directory
log-level global 1-8 8 log-level (8 is most verbose)
log-name global string Client Name, which appears in a log file
log-mode global short or

full
full logging mode: short (date and name

suppressed) or full
preference interface 0-255 0 server preference value (higher is

more prefered)
unicast interface address empty Specify which address should be

used.
iface-max-lease interface integer 4294967296 how many addresses can be leased

by all clients?
client-max-lease interface integer 4294967296 how many addresses can be leased

by one client?
rapid-commit interface 0 or 1 0 should we allow Rapid Commit

(SOLICIT–REPLY)?
relay interface string not defined Name of the physical interface used

to reach this relay
interface-id interface integer not defined ID of the relay interface. Must be

unique
valid-lifetime class integer 4294967296 valid lifetime for address (specified

in seconds)
prefered-lifetime class integer 4294967296 after this amount of time(in sec-

onds) address becomes depreciated
T1 class integer 4294967296 client should renew addresses after

T1 seconds
T2 class integer 4294967296 client should send REBIND after T2

seconds
reject-clients class addrs or

DUID list
empty list containing servers which should

be discarded in configuration of this
IA

accept-only class addrs or
DUID list

empty these are the only clients allowed to
use this class

class-max-lease class integer 4294967296 how many addresses can be leased
from this class?

6.5.5 Addional options

Server supports additonal options, not specified in RFC3315. They have generic form:

option OptionName OptionsValue

All supported options are specified in the table below:

Dibbler – a portable DHCPv6 User’s Guide 15

OptionName OptionsValue Default Description

dns-server addrs list empty DNS servers list
domain string list empty domain names list
ntp-server addrs list empty NTP servers list
time-zone timezone empty time zone
sip-server addrs list empty SIP servers list
sip-domain string list empty domain names list
nis-server addrs list empty NIS servers list
nis-domain string empty domain name
nisplus-server addrs list empty NIS+ servers list
nis-domain string empty domain name
lifetime integer empty how often renew options?

Lifetime is a special case. It is not set up by client in a system configuration. It is, however, used by
the client to know how long obtained values are correct.

6.5.6 Server configuration file examples

In opposite to client, server uses only interfaces described in config file. Let’s examine this common
situation: server has interface named eth0 (which is fourth interface in the system) and is supposed to
assign addresses from 2000::100/124 class. Simplest config file looks like that:

iface eth0

{

class

{

pool 2000::100-2000::10f

}

}

Another example: Server should support 2000::0/120 class on eth0 interface. It should not allow any
client to obtain more than 5 addresses and should not grant more then 50 addresses in total. And it
should have prefence set to 7, accept T1 from 1 to 2 minutes and so on. Config file is presented below:

log-mode short

log-level 7

iface eth0

{

iface-max-lease 50

client-max-lease 5

preference 7

class

{

pool 2000::1-2000::100

}

}

Here’s modified previous example. Instead of specified limits, unicast communication should be sup-
ported.

log-level 7

Dibbler – a portable DHCPv6 User’s Guide 16

iface eth0

{

unicast 2000::1234

class

{

pool 2000::1-2000::100

}

}

Ok, now let’s present last config file with various requirements:

• Add new class on fifth interface named eth1, for example 2000::fe00/120.

• Rapit commit is allowed on eth1.

• Server preference on this interface is set to maximum (255).

• Assign 2000::20/124 class on fourth interface named eth0. Preference value for this interface should
be 0.

• Ignore client with DUID “00001231200adeaaa” in the class 2000::20/124.

• Valid and prefered lifetimes are 1 hour and 30 minutes respectively. T1 and T2 set to 10 minutes
and 20 minutes.

• For class 2000::100/124 valid and prefered lifetimes are 2 hours and 1 hour.

• In class 2000::100/124 one client can request up to two addresses.

• Do not assign more than 10 addresses from 2000::20/124 class.

• Client with fe80::200:39ff:fe4b:1abc link-local address should get his static address 2000::2f.

• We shall support DNS and NTP servers on interface 5.

• Log level is set to omit debug messages.

Here’s config to do all this stuff:

log-level 7

valid-lifetime 3600

prefered-lifetime 1800

T1 600

T2 1200

iface eth0

{

preference 0

class

{

reject-clients ‘‘00001231200adeaaa’’

2000::2f-2000::20 // it’s in reverse order, but it works.

// just a trick.

}

class

{

Dibbler – a portable DHCPv6 User’s Guide 17

accept-only fe80::200:39ff:fe4b:1abc

pool 2000::2f

}

}

iface 5

{

dns-server 2000::123:456,2000::456:1234

ntp-server 2000::1111:2222

rapid-commit 1

preference 255

class

{

pool 2000::fe00-2000::feff

class-max-lease 10

}

class

{

valid-lifetime 7200

prefered-lifetime 3600

pool 2000::100-2000::10f

client-max-lease 2

}

}

The last server configuration example explains how to use relays. There is some remote relay with will
send encapsulated over eth1 interface. It is configured to append interface-id option set to 5020 value.
Let’s allow all clients using this relay some addresses and information about DNS servers:

iface relay1 {

relay eth1

interface-id 5020

class {

pool 2000::1-2000::ff

}

option dns-server 2000::100,2000::101

}

6.6 Relay configuration file

Relay configuration is stored in /etc/dibbler/relay.conf file.

6.6.1 Global scope

Every option can be declared in global scope. Config file consists of global options and one or more
inteface definitions. Note that reasonable minimum is 2 interfaces, as defining only one would mean to
resend messages on the same interface.

6.6.2 Interface declaration

Interface can be declared this way:

Dibbler – a portable DHCPv6 User’s Guide 18

iface name_of_the_interface

{

interface options

}

or

iface number

{

interface options

}

where name of the interface denotes name of the interface and number denotes it’s number. It does
not need to be enclosed in single or double quotes (except windows cases, when interface name contains
spaces).

6.6.3 Options

Every option has a scope it can be used in, default value and sometimes allowed range.
Name Scope Values default Description

(default)

log-level global 1-8 8 log-level (8 is most verbose)
log-name global string Client Name, which appears in a log file
log-mode global short or

full
full logging mode: short (date and name

suppressed) or full
client multicast interface boolean Client’s messages should be received

on the multicast address.
client unicast interface address not defined Client’s messages should be received

on the specified multicast address.
server multicast interface boolean Forwarded messages should be sent

to the multicast address.
server unicast interface address not defined Forwarded messages should be send

to the specified address.
interface-id interface integer not defined Identifier of that particular inter-

face. Used for interface-id option.

It is worth mentioning that interface-id should be specified on the interface, which is used to receive
messages from the clients, not the one used to forward packets to server.

6.6.4 Relay configuration file examples

Relay configuration file is fairly simple. Relay forwards DHCPv6 messages between interfaces. Mes-
sages from client are encapsulated and forwarded as RELAY FORW messages. Replies from server are
received as RELAY REPL message. After decapsulation, they are being sent back to clients.

It is vital to inform server, where this relayed message was received. DHCPv6 does this using interface-
id option. This identifier must be unique. Otherwise relays will get confused when they will receive reply
from server. Note that this id does not need to be alligned with system interface id (ifindex). Think
about it as ”ethernet segment identifier” if you are using Ethernet network or as ”bss identifier” if you
are using 802.11 network.

Let’s assume this case: relay has 2 interfaces: eth0 and eth1. Clients are located on the eth1 network.
Relay should receive data on that interface using well-known ALL DHCP RELAYS AND SERVER mul-

Dibbler – a portable DHCPv6 User’s Guide 19

ticast address (ff02::1:2). Relay also listens on its global address 2000::123. Packets received on the eth1
should be forwarded on the eth0 interface, also using multicast address:

log-level 8

log-mode short

iface eth0 {

server multicast yes

}

iface eth1 {

client multicast yes

client unicast 2000::123

interface-id 1000

}

Here is another example. This time messages should be forwarded from eth1 and eth3 to the eth0
interface (using multicast) and to the eth2 interface (using server’s global address 2000::546). Also clients
must use multicasts (the default approach):

iface eth0 {

server multicast yes

}

iface eth2 {

server unicast 2000::456

}

iface eth1 {

client multicast yes

interface-id 1000

}

iface eth3 {

client multicast yes

interface-id 1001

}

7 Frequently Asked Question

Soon after Dibbler was published, I started to receive questions from users. Some of them were
common enough to get into this section.

7.1 Common

Q: Why client does not configure routing after assigning addresses, so I cannot e.g. ping other hosts?
A: It’s rather difficult problem. DHCP’s job is to obtain address and it exactly does that. To ping

any other host, routing should be configured. And this should be done using Router Advertisements. It’s
kinda odd, but that’s the way it was meant to work. If there will be requests from users, I’ll think about
some enchancements.

Dibbler – a portable DHCPv6 User’s Guide 20

Q: Dibbler sends some options which have values not recognized by the Ethereal or by other imple-
mentations. What’s wrong?

A: DHCPv6 is a relatively new protocol and additional options are in a specification phase. It
means that until standarisation process is over, they do not have any officially assigned numbers. Once
standarization process is over (and RFC document is released), this option gets an official number.

There’s pretty good chance that different implementors may choose diffrent values for those not-yet
officialy accepted options. To change those values in Dibbler, you have to modify file misc/DHCPConst.h
and recompile server or client. See Developer’s Guide, section Option Values for details.

Currently options with assigned values are:

• RFC3315: CLIENT ID , SERVER ID , IA NA , IAADDR , OPTION REQUEST , PREF-

ERENCE , ELAPSED , STATUS CODE , RAPID-COMMIT , IA TA , RELAY MSG ,
AUTH MSG , USER CLASS , VENDOR CLASS , VENDOR OPTS , INTERFACE ID , RE-

CONF MSG , RECONF ACCEPT ;

• RFC3319: SIP SERVERS , SIP DOMAINS ;

• RFC3646: DNS RESOLVERS , DOMAIN LIST ;

• RFC3633: IA PD , IA PREFIX ;

• RFC3898: NIS SERVERS , NIS+ SERVERS , NIS DOMAIN , NIS+ DOMAIN .

Take note that Dibbler does not support all of them. There are several options which currently does not
have values assigned (in parenthesis are numbers used in Dibbler): NTP SERVERS (40), TIME ZONE

(41), LIFETIME (42), FQDN (43).

7.2 Linux specific

Q: I can’t run client and server on the same host. What’s wrong?
A: First of all, running client and server on the same host is just plain meaningless, except testing

purposes only. There is a problem with sockets binding. To work around this problem, consult Developer’s
Guide, Tip section how to compile Dibbler with certain options.

Q: After enabling unicast communication, my client fails to send REQUEST messages. What’s wrong?
A: This is a problem with certain kernels. My limited test capabilites allowed me to conclude that

there’s problem with 2.4.20 kernel. Everything works fine with 2.6.0 with USAGI patches. Patched
kernels with enhanced IPv6 support can be downloaded from http://www.linux-ipv6.org/. Please let
me know if your kernel works or not.

7.3 Windows specific

Q: After installing Advanced Networking Pack or Windows XP ServicePack2 my DHCPv6 (or other
IPv6 application) stopped working. Is Dibbler compatible with Windows XP SP2?

A: In both products provide IPv6 firewall. It is configured by default to reject all incoming IPv6
traffic. You have to disable this firewall. To do so, issue following commands in a console:

netsh firewall set adapter "Local Area Connection" filter=disable

Q: Server or client refuses to create DUID. What’s wrong?
A: Make sure that you have at least one up and running interface with at least 6 bytes long MAC

address. Simple Ethernet card matches those requirements. Note that network cable must be plugged,
otherwise interface is marked as down.

http://www.linux-ipv6.org/

Dibbler – a portable DHCPv6 User’s Guide 21

8 History

Dibbler project was started as master thesis by Tomasz Mrugalski and Marek Senderski on Computer
Science faculty on Gdansk University of Technology. Both authors graduated in september 2003 and soon
after started their jobs.

During master thesis writing, it came to my attention that there are other DHCPv6 implementations
available, but none of them has been named properly. Refering to them was a bit silly: ,,DHCPv6
published on sourceforge.net has better support than DHCPv6 developed in KAME project, but our
DHCPv6 implementation...”. So I have decided that this implementation should have a name. Soon it
was named Dibbler after famous CMOT Dibbler from Discworld series by Terry Pratchett.

Sadly, Marek does not have enough free time to develop Dibbler, so his involvment is very limited at
this time. However, that does not mean, that this project is abadoned. It is being actively developed by
me (Tomek). Keep in mind that I work at full time and do Ph.D. studies, so my free time is also greatly
limited.

9 Contact

There is an website located at http://klub.com.pl/dhcpv6. If you belive you have found a bug,
please put it in Bugzilla – it is a bug tracking system located at http://klub.com.pl/bugzilla. If you
are not familiar with that kind of system, don’t worry. After simple registration, you will be asked for
system and Dibbler version you are using and so on. Without feedback from users, author will not be
aware of many bugs and so will not be able to fix them. That’s why users feedback is very important.
You can also send bug report directly using e-mail. Be sure to be as detailed as possible. Please include
both server and client log files, both config and xml files. If you are familiar with tcpdump or ethereal,
traffic dumps from this programs are also great help.

If you have used Dibbler and it worked ok, this documentation answered all you question and every-
thing is in order (hmmm, wake up, it must be a dream, it isn’t reality:), also send a short note to author.
He can be contated at thomson(at)klub(dot)com(dot)pl (replace (at) with @ and dot with .). Be sure to
include information which country do you live in. It’s just author’s curiosity to know where Dibbler is
being used or tested.

10 Thanks and greetings

I would like to send my thanks and greetings to various persons. Without them, Dibbler would not
be where is it today.

Marek Senderski – He’s author of almost half of the Dibbler code. Without his efforts, Dibbler would
be simple, long forgotten by now master thesis.

Jozef Wozniak – My master thesis’ supervisor. He allowed me to see DHCP in a larger scope – as part
of total automatisation process.

Jacek Swiatowiak – He’s my master thesis consultant. He guided Marek and me to take first steps
with DHCPv6 implementation.

Ania Szulc – Discworld fan and a great girl, too. She’s the one who helped me to decide how to name
this yet-untitled DHCPv6 implementation.

Christian Strauf – Without his queries and questions, Dibbler would be abadoned half a year or so
ago.

Bartek Gajda – His interest convinced me that Dibbler is worth the effort to develop it further.

http://klub.com.pl/dhcpv6
http://klub.com.pl/bugzilla

Dibbler – a portable DHCPv6 User’s Guide 22

Artur Binczewski and Maciej Patelczyk – They both ensured that Dibbler is (and always will be)
GNU GPL software. Open source community is greateful.

Josep Sole – His mails (directly and indirectly) resulted in various fixes and speeded up 0.2.0 release.

	Intro
	Overview
	Requirements
	Installation and usage
	Linux installation
	Windows installation

	Compilation
	Linux compilation
	WindowsXP/2003 compilation

	Configuration files
	Tokens and basic informations
	Scopes
	Comments
	Client configuration file
	Global scope
	Interface declaration
	IA declaration
	Address declaration
	Standard options
	Addional options
	Stateless configuration
	Client configuration file examples

	Server configuration file
	Global scope
	Interface declaration
	Class scope
	Options
	Addional options
	Server configuration file examples

	Relay configuration file
	Global scope
	Interface declaration
	Options
	Relay configuration file examples

	Frequently Asked Question
	Common
	Linux specific
	Windows specific

	History
	Contact
	Thanks and greetings

